Кононов Леонид Олегович

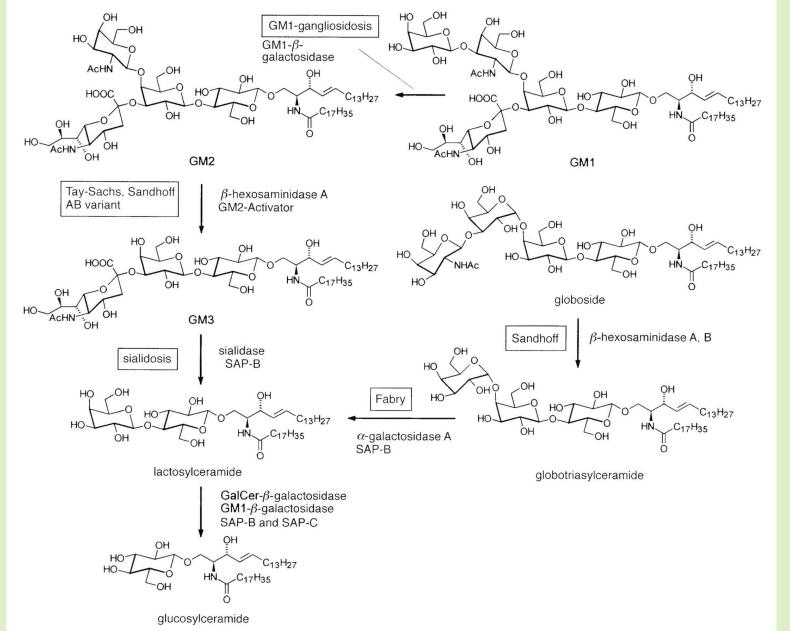
ХИМИЯ УГЛЕВОДОВ И ГЛИКОБИОЛОГИЯ

https://углеводы.su

Лекция 7 Медицинская гликобиология

Патологии, ассоциированные с углеводами и углеводсвязывающими белками

- 6. Essentials of glycobiology, A. Varki, et al. (Eds.), 3d edn., 2017, Ch. 41–47, 55, 57, 58.
- 22. Glycoscience and Microbial Adhesion, T. K. Lindhorst, S. Oscarson (Eds.), 2009, 186 pp.
- 25. Carbohydrates as Drugs, P. H. Seeberger, C. Rademacher (Eds.), 2014, 237 pp.
- 28. S. Hakomori. Chem. Phys. Lipids. 1986, 42, 209-233.
- 29. D. A. Cumming. *Glycobiology* **1991**, *1*, 115-130.
- 37. M. von Itzstein. *Nature Rev. Drug Discov.* **2007**, *6*, 967-974.
- 44. B. Ernst, J. L. Magnani. *Nature Rev. Drug Discov.* **2009**, *8*, 661-677.
- 45. P. Stallforth, B. Lepenies, A. Adibekian, P. H. Seeberger. *J. Med. Chem.* **2009**, *52*, 5561-5577.
- 47. R. D. Astronomo, D. R. Burton. *Nature Rev. Drug Discov.* **2010**, *9*, 308-324.
- 56. Д. С. Ньюбург. *Биохимия* **2013**, 78, 990-1007.
- 59. F. Peri. *Chem. Soc. Rev.* **2013**, *42*, 4543-4556.
- 60. T. R. Branson, W. B. Turnbull. *Chem. Soc. Rev.* **2013**, *42*, 4613-4622.
- 61. A. Bernardi, et al. Chem. Soc. Rev. 2013, 42, 4709-4727.
- 63. A. P. Corfield. *Biochim. Biophys. Acta* **2015**, *1850*, 236-252.


Медицинская гликобиология

Болезни, связанные с деградацией углеводов

Гликопротеин-деградирующие ферменты

- Экзо-гликозидазы (Fuc-, Gal-, Neu5Ac- etc.)
- Эндо-ферменты N-цепей (endo-H, endo-F, endo-D, etc.):
 Гликоамидазы (связь OS-NH→Asn)
 GlcNAc-азы (связь GlcNAc→GlcNAc-Asn)
 Gal-азы (связь Gal1→4GlcNAc комплексных ОС)
- О-гликопротеиназы (пептидные связи вблизи и между О-цепями)
- Эндо-гликозидазы О-цепей (связь GalNAc→Ser/Thr)

Деградация гликосфинголипидов: гликозидазы и гликозидозы

Дефекты деградации гликопротеинов и гликолипидов: гликозидозы

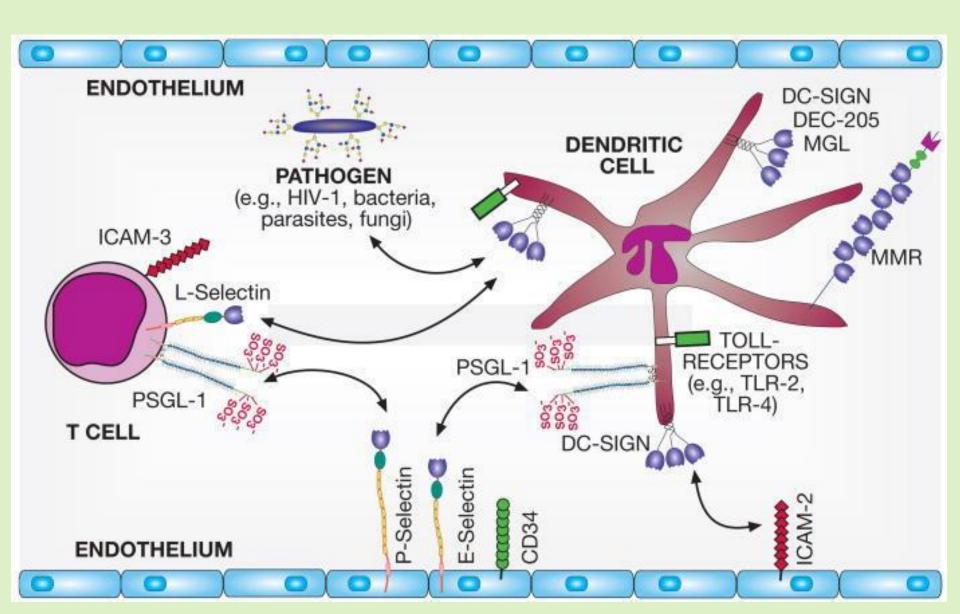
Disorder	Defect	Glyco- protein	Glyco -lipid	Clinical symptoms
α-Mannosidosis (types I and II)	α-mannosidase	major	none	type I: infantile onset, progressive mental retardation, hepatomegaly, death between 3 and 12 years type II: juvenile/adult onset, milder, slowly progressive
β-Mannosidosis	β-mannosidase	major	none	severe quadriplegia, death by 15 months in most severe cases; mild cases have mental retardation, angiokeratoma, facial dysmorphism
Aspartylglucosa minuria	aspartyl- glucosaminidase	major	none	progressive, coarse facies, mental retardation
Sialidosis (mucolipidosis I)	sialidase	major	minor	progressive, severe mucopolysaccharidosis-like features, mental retardation
Schindler (types I and II)	α- <i>N</i> -acetyl- galactosaminidase	yes	?	type I: infantile onset, neuroaxonal dystrophy. severe psychomotor and mental retardation, cortical blindness, neurodegeneration type II: mild intellectual impairment, angiokeratoma, corpus diffusum
Galactosialidosis	protective protein/cathepsin A	major	minor	coarse facies, skeletal dysplasia, early death
Fucosidosis	α-fucosidase	major	minor	spectrum of severities includes psychomotor retardation, coarse facies, growth retardation
GM1 gangliosidosis	β-galactosidase	minor	major	progressive neurological disease and skeletal dysplasia in severe infantile form
GM2 gangliosidosis	β-hexosaminidase	minor	major	severe form: neurodegeneration with death by 4 years less severe form: slower onset of symptoms and variable symptoms, all relating to various parts of the central nervous system

Дефекты деградации гликолипидов: гликозидозы

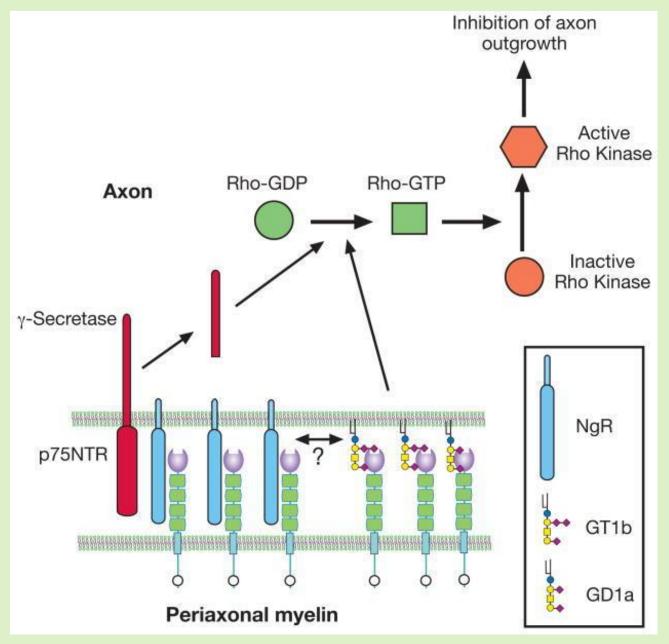
Disease name	Enzyme or protein deficiency	Clinical symptoms
Tay-Sachs	β-hexosaminidase A	severe: neurodegeneration, death by 4 years less severe: slower onset of symptoms, variable symptoms all relating to parts of the nervous system
Sandhoff	β-hexosaminidase A and B	same as Tay–Sachs
GM1 gangliosidosis	β-galactosidase	see Table 41.1
Sialidosis	sialidase	see Table 41.1
Fabry	α-galactosidase	severe pain, angiokeratoma, corneal opacities, death from renal or cerebrovascular disease
Gaucher's	β-glucoceramidase	severe: childhood or infancy onset, hepatosplenomegaly, neurodegeneration mild: child/adult onset, no neurodegenerative course
Krabbe	β-galactoceramidase	early onset with progression to severe mental and motor deterioration
Metachromatic leukodystrophy	arylsulfatase A (cerebroside sulfatase)	infantile, juvenile, and adult forms can include mental regression, peripheral neuropathy, seizures, dementia
Saposin deficiency	saposin precursor	similar to Tay–Sachs and Sandhoff

Дефекты деградации гликозаминогликанов: мукополисахаридозы

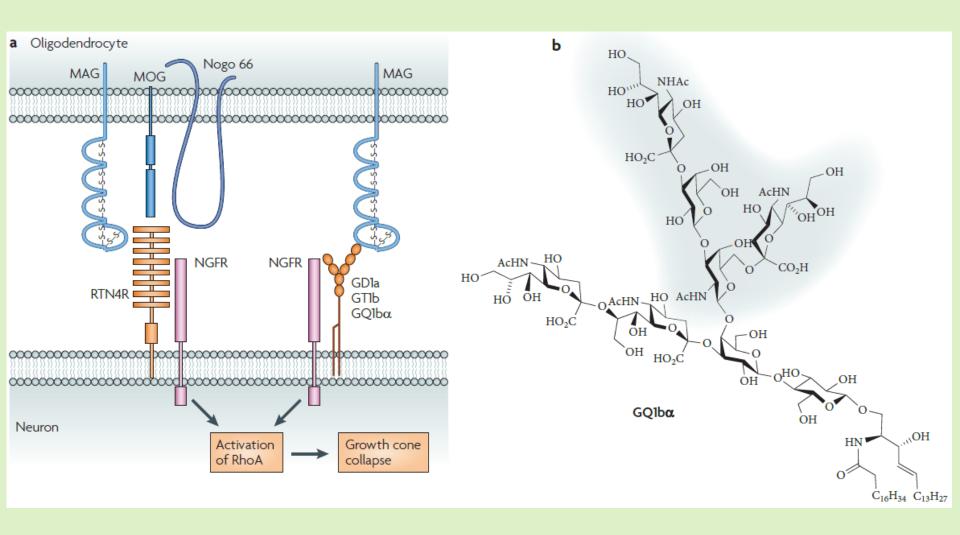
Number	Common name	Enzyme deficiency	Glycosa mino- glycan affected	Clinical symptoms
MPSIH	Hurler, Hurler/Scheie, Scheie	α-L-iduronidase	DS, HS	Hurler: corneal clouding, organomegaly, heart disease, mental retardation, death in childhood Hurler/Scheie and Scheie: less severe, individuals survive longer
MPS II	Hunter	iduronate-2-sulfatase	DS, HS	severe: organomegaly, no corneal clouding, mental retardation, death before 15 years less severe: normal intelligence, short stature, survival age 20–60
MPS III A	Sanfilippo A	heparan N-sulfatase	HS	profound mental deterioration, hyperactivity, relatively mild somatic manifestations
MPS III B	Sanfilippo B	α- <i>N</i> - acetylglucosaminidase	HS	similar to III A
MPS III C	Sanfilippo C	acetyl CoA: α- glucosaminide acetyltransferase	HS	similar to III A
MPS III D	Sanfilippo D	N-acetylglucosamine 6- sulfatase	HS	similar to III A
MPS IV A	Morquio A	galactose-6-sulfatase	KS, CS	distinctive skeletal abnormalities, corneal clouding, odontoid hypoplasia, milder forms known to exist
MPS IV B	Morquio B	β-galactosidase	KS	same as IV A
MPS VI	Maroteaux-Lamy	N-acetylgalactosamine 4-sulfatase	DS	corneal clouding, normal intelligence, survival to teens in severe form; milder forms known to exist
MPS VII	Sly	β-glucuronidase	DS, HS, CS	wide spectrum of severity, including hydrops fetalis and neonatal form
	multiple sulfatase deficiency	sulfatase modifying factor converts cysteine→formyl glycine	all sulfated glycans	hypotonia, retarded psychomotor development, quadriplegia

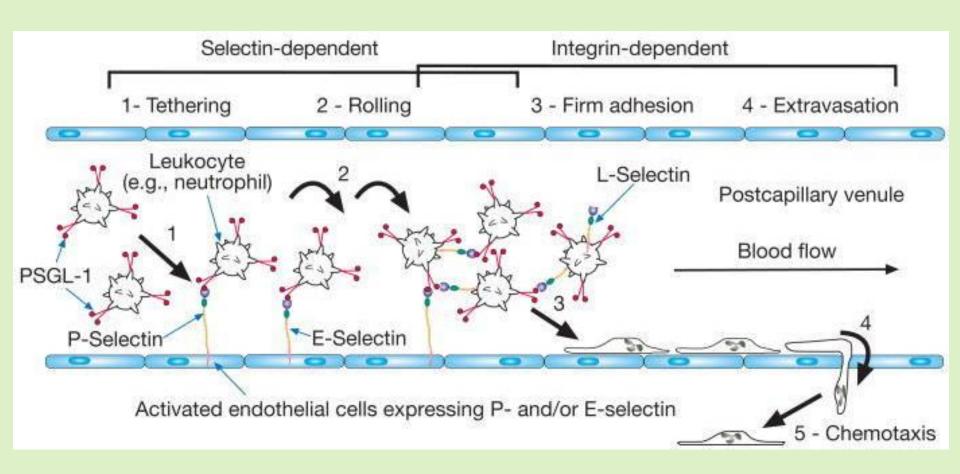

Медицинская гликобиология

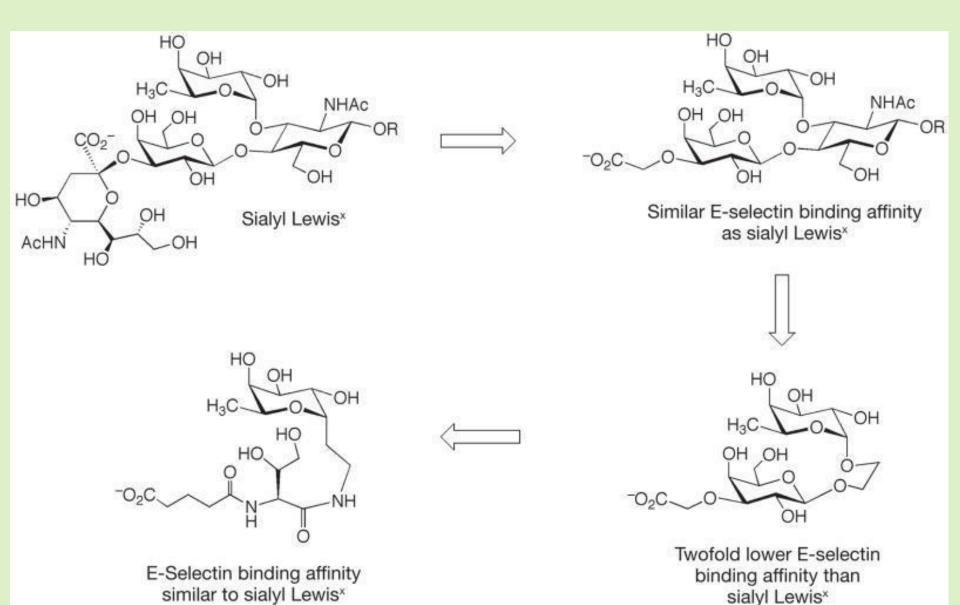
Углеводные лекарства:


антагонисты углевод-белковых взаимодействий

Углеводные лекарства


Лектины: система врожденного иммунитета, распознавание патогенов и клеточная адгезия


Ингибирование роста аксонов сиглеком-4 (MAG)

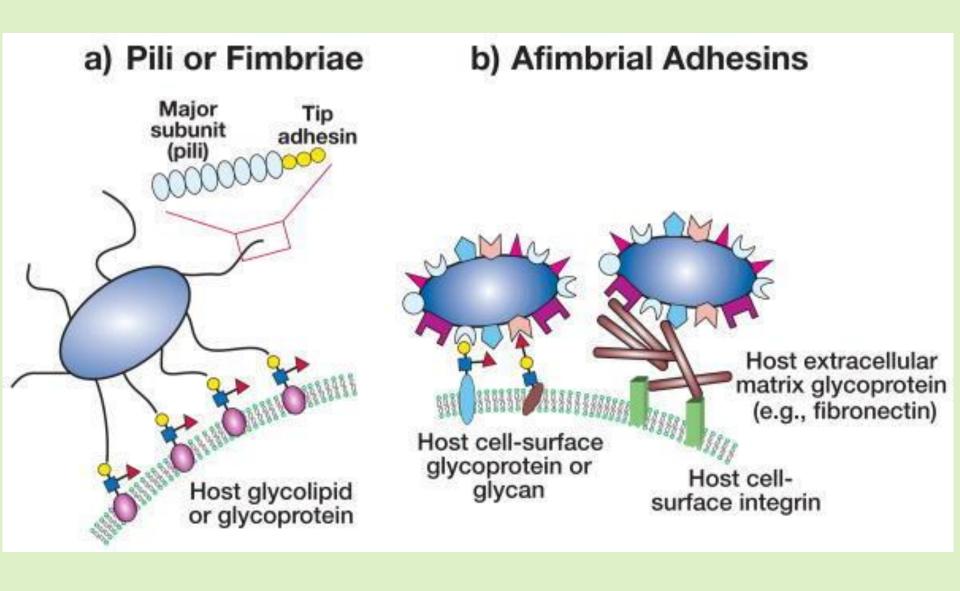

Взаимодействие сиглека-4 (MAG) с GQ1blpha

Антагонисты взаимодействия сиглека-4 (MAG) с 14 GQ1b α – стимуляторы пластичности нейронов

Ингибиторы E-селектина – аналоги SiaLex

Антагонисты селектинов

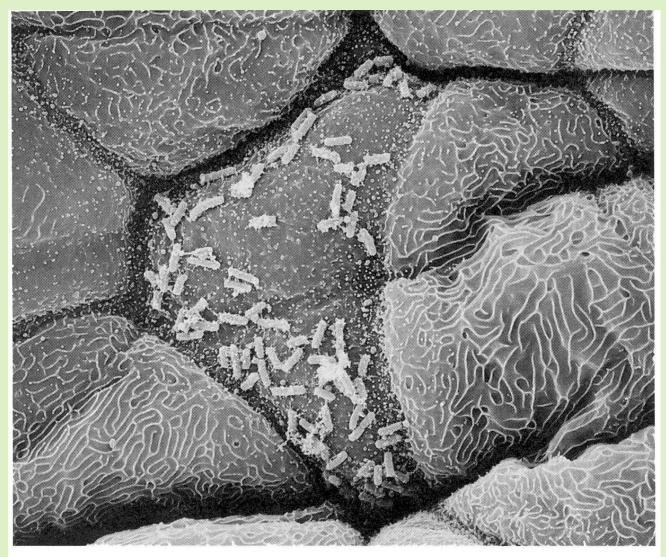
Table 1 Small-molecule selectin antagonists in preclinical and clinical trials						
Name and structure	Specificity	Disease	Institution	Status	Refs	
HO OH CO ₂ H OH	E-, P- and L-selectin	Cardio- vascular injury	Cytel	Stopped	179	
HO ₂ C (CH ₂) ₆ CO ₂ H OH OH OH Bimosiamose (TBC-1269)	E-, P- and L-selectin	Asthma and psoriasis	Revotar	Phase IIa	180	
$\begin{array}{c} CH_3NH \\ O \\ $	E-, P- and L-selectin	Allergic dermatitis	Nippon Organon	Preclinical	181	


Антагонисты селектинов

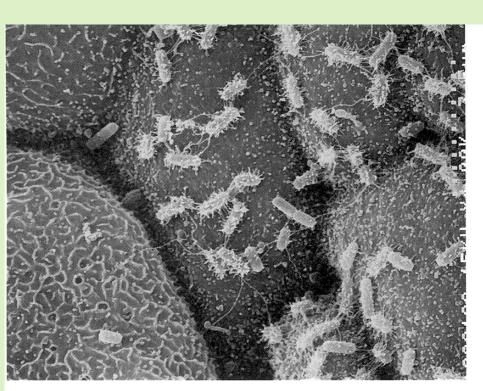
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-, P- and L-selectin	Sickle cell crisis	Glyco- Mimetics	Phase I	182
CO ₂ H OH CI PSI-697	P-selectin	Athero- thrombotic and venous thrombotic diseases	Wyeth	Phase I	183
OH OH C ₁₄ H ₂₉ NaO ₃ SO OH OH C ₁₄ H ₂₉ HO OH OH GSC-150	E-, P- and L-selectin	Metastatic cancer	Kanebo	Unknown	184
ÖH O OH O OH O OH O Efomycin M	E- and P-selectin	Psoriasis	Bayer	Preclinical	185

Медицинская гликобиология

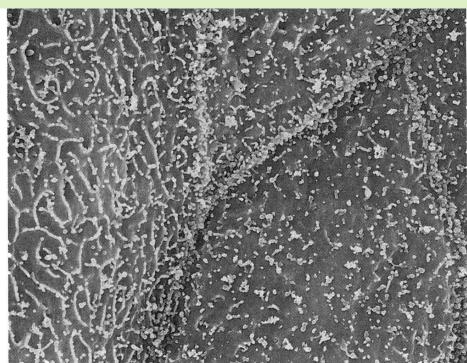
Бактериальная адгезия Анти-адгезионная анти-бактериальная терапия


Бактериальная адгезия: варианты

Углеводы поверхности клеток – сайты присоединения бактериальных патогенов


Organism	Target tissue	Carbohydrate	Structure
E. coli Type 1	Urinary	Manα3Manα6Man	GP
E. coli P	Urinary	Galα4Gal	GL
E. coli S	Neural	NeuAc (α2-3)Galβ3GalNAc	GL
E. coli CFA/1	Intestinal	NeuAc (α2-8)	GP
E. coli F1C	Urinary	GalNAcβ4Galβ	GL
E. coli F17	Urinary	GlcNAc	GP
E. coli K1	Endothelial	GlcNAcβ4GlcNAc	GP
E. coli K99	Intestinal	NeuAc(α2-3)Galβ4Glc	GL
C. jejuni	Intestinal	Fucα2GalβGlcNAc	GP
H. pylori	Stomach	NeuAc(α2-3)Galβ4GlcNAc	GP
		Fucα2Galβ3(Fucα4)Gal	GP
K. pneumoniae	Respiratory	Man	GP
N. gonorrhoea	Genital	Galβ4Glc(NAc)	GL
N. meningitidis	Respiratory	[NeuAc($\alpha 2$ –3)]	GL
		Galβ4GlcNAcβ3Galβ4GlcNAc	
P. aeruginosa	Respiratory	L-Fuc	GP
	Respiratory	Galβ3Glc(NAc)β3Galβ4Glc	GL
S. typhimurium	Intestinal	Man	GP
S. pneumoniae	Respiratory	NeuAcα2-3Galβ1-4GlcNAcβ1-	GL
		3Galβ1-4Glc	
S. suis	Respiratory	Galα4Galβ4Glc	GL
GP = glycoprotein, G	GL = glycolipids		

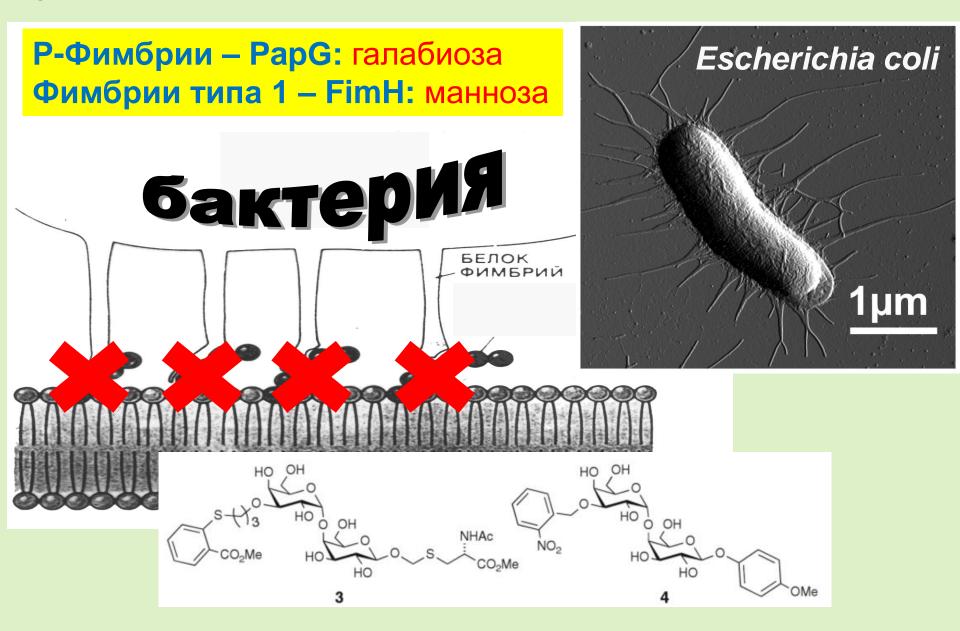
Селективность адгезии *E. coli*



BACTERIA ADHERE to tissues selectively. Hairlike protrusions called fimbriae on the bacteria bind exclusively to certain surface carbohydrates. These interactions determine which tissues are susceptible to bacterial invasion. Rod-shaped *Escherichia coli* bacteria are shown here on tissue from the urinary tract.

Селективность бактериальной адгезии (слева) 23 и ингибирование адгезии (справа): *E. coli*

SELECTIVE EFFECTS of carbohydrates on bacteria are illustrated in these photographs. These *E. coli* have a lectin for the P glycolipid. Bacteria incubated in the sugar mannose

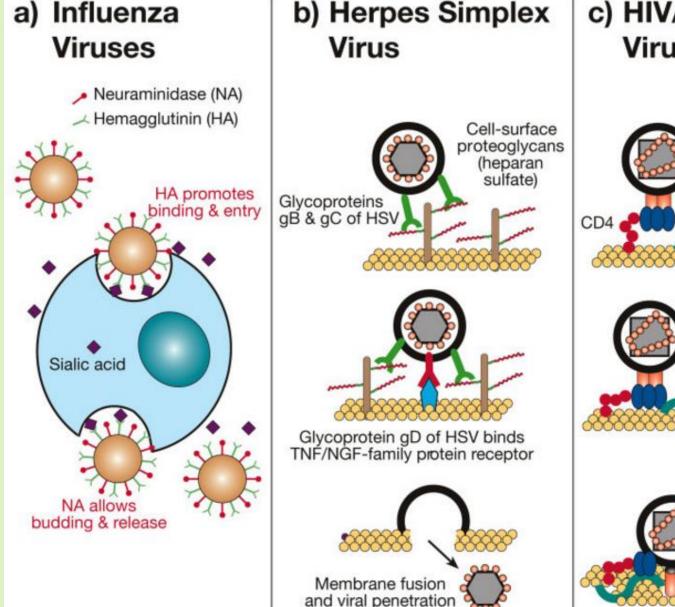

can still cling to epithelial tissue (*left*). A constituent of the P glycolipid binds to the bacteria's lectin and prevents adhesion (*right*).

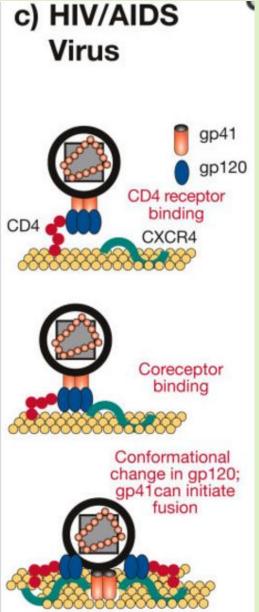
Узнавание углеводов клетки-хозяина лектином бактерии – первый этап адгезии

Р-Фимбрии – С: галабиоза Escherichia coli Фимбрии типа 1 – FimH: манноза бактерия БЕЛОК ФИМБРИЙ

- 7. Comprehensive Glycoscience. From Chemistry to System Biology, 2007, Ch. 3.28.3.1, p. 636 (2346).
- 22. Glycoscience and Microbial Adhesion. K. Lindhorst, S. Oscarson (Eds.), 2009, 186 pp.
- 61. A. Bernardi, et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013, 42, 4709.

Ингибирование связывания лектина бактерии с 25 углеводами клетки – анти-адгезионная терапия


Антагонисты FimH: мультивалентность

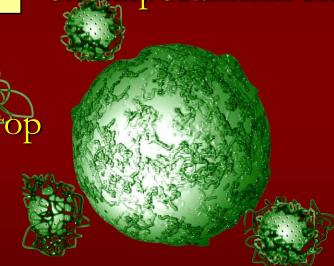


Медицинская гликобиология

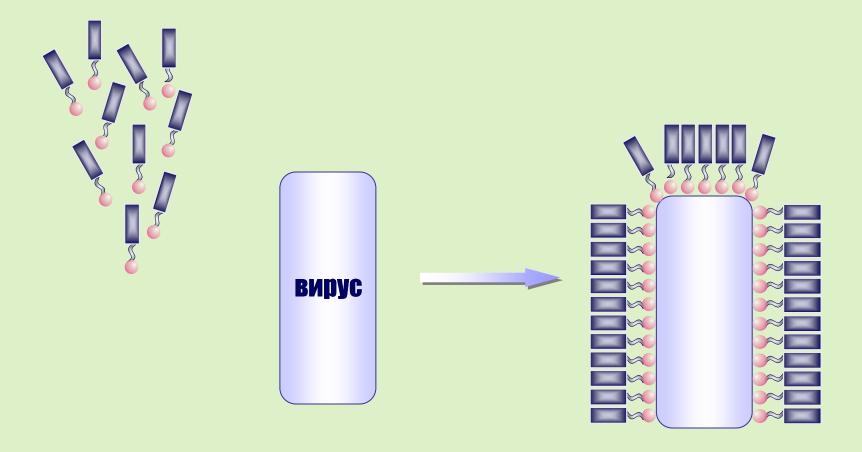
Анти-адгезионная терапия (вирусы)

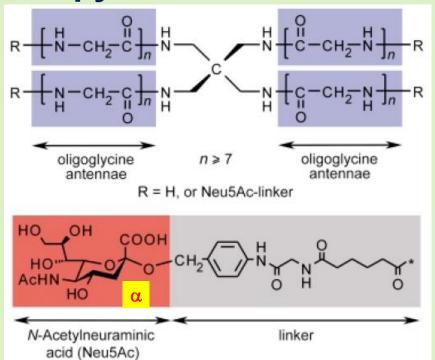
Механизм проникновения вируса в клетку хозяина

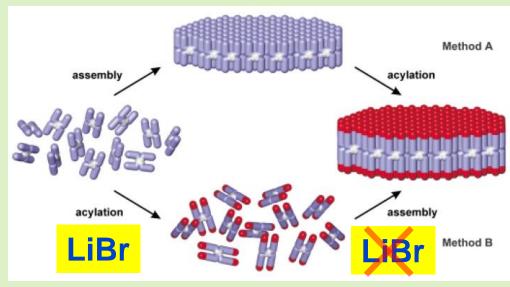
Некоторые данные по рецепторам вирусов

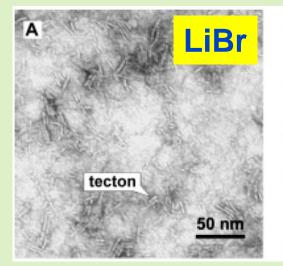

Вирус	Углевод-рецептор		
REOVIRUSES (gastroenterites, respiratoric diseases, conjunctivite)	Sialo-oligosaccharides (sialo-OS)		
ORTOMIXOVIRUSES (influenza):	Sialo-OS		
A , B	Neu5Acα2-6Galβ1-4GlcNAcβ-		
C	9-O-Ac-Neu5Acα-		
PARAMIXOVIRUSES: SEV, NDV (respiratoric diseases)	Sialo-OS		
ADENOVIRUSES (gastroenterites, respiratoric diseases, conjunctivite)	Sialo-OS		
CORONAVIRUSES (gastroenterites, respiratoric diseases)	Neu5Acα2-3Galβ1-4Glcβ-		
PAPOVAVIRUSES (oncology)	Neu5Acα2-3Galβ1-4Glcβ-		
PHYLOVIRUSES (hemorragic fever)	GAGs		
HERPESVIRUSES: HSV, EBV, CMV (oncology)	GAGs		
CALICIVIRUSES: NV (gastroenterites)	H (type 1)		
RETROVIRUSES: HIV-1, 2 (AIDS)	GalCer		

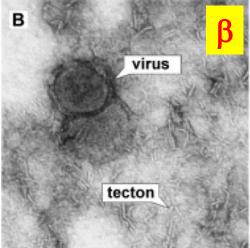
Принцип анти-адгезионной терапии гриппа

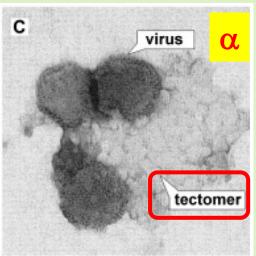

	Viruses					
Inhibitors		23/89M N1)	A/NIB/26/90M (H3N2)			
	K _{diss}	IC _{90%}	K _{diss}	IC _{90%}		
Human tracheal mucin	0.1	>10	0.5	>10		
Human nasal mucin	0.2	>10	1	>10		
6`SLN-PAA	0.01	0.05	0.02	0.5		

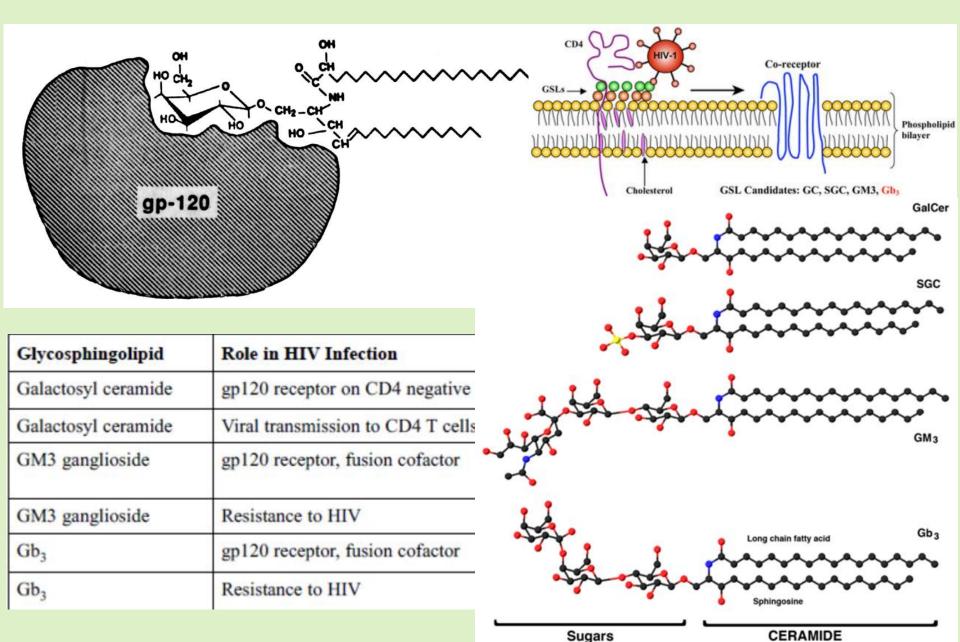


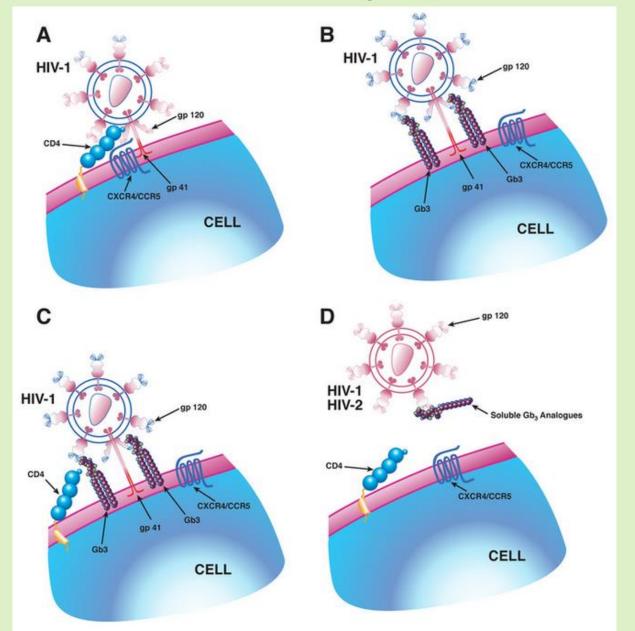



Ассоциация гликопептида, промотированная вирусом

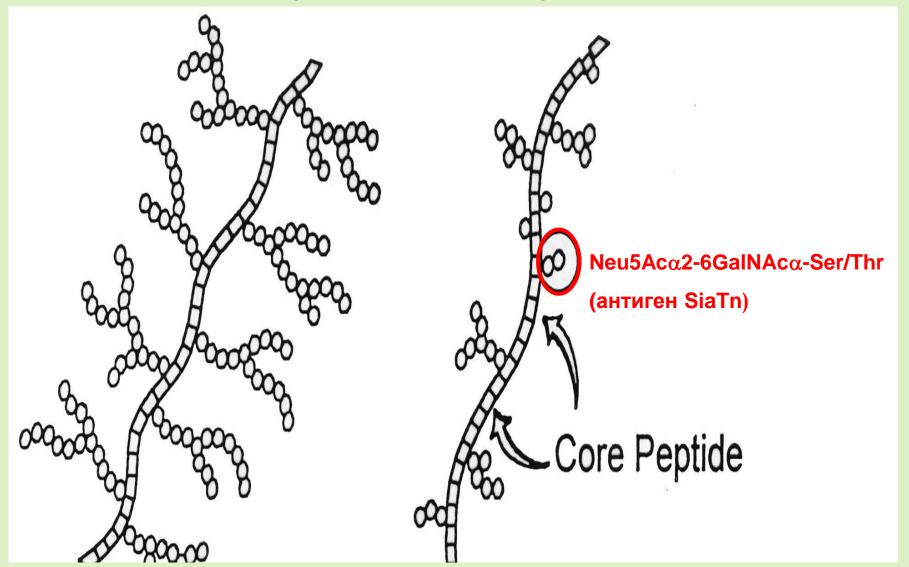



Ассоциация гликопептида, промотированная вирусом





ВИЧ: гликосфинголипиды – потенциальные ингибиторы связывания вируса


Медицинская гликобиология

Онкология

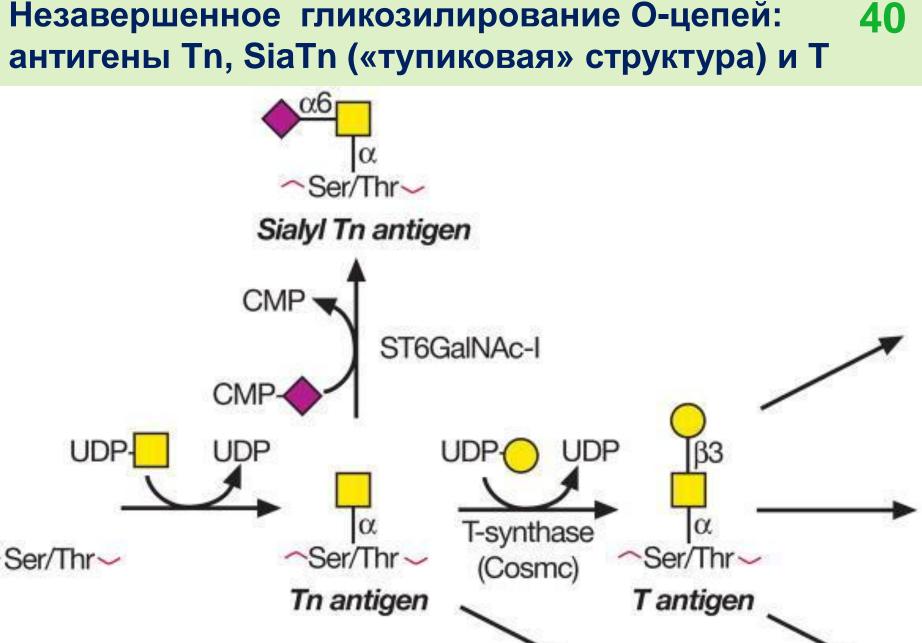
Опухоль-ассоциированный антиген SiaTn

Нормальный муцин

Муцин онкобольных

Опухоль-ассоциированные углеводные цепи

- Почему «ассоциированные», а не «специфические»?
 - «Опухолевые маркеры» соединения, которые продуцируются опухолевыми клетками или организмом в ответ на развитие опухоли.
 - ▶ Опухоль-специфические антигены экспрессируются только клетками опухоли.
 - Опухоль-ассоциированные антигены слабо экспрессированы в нормальных тканях и характеризуются более высокой степенью экспрессии в опухолевых клетках по сравнению с нормальными (или «не в то время, не в том месте»).
- Зачем клетки опухоли меняют профиль гликозилирования?
 - Измененное гликозилирование помогает уходить от иммунного ответа.
 Некоторые механизмы этого ухода:
 - перманентная экспрессия новых антигенов (или «хорошо забытых»).
 - увеличение секреции гликопротеинов и гликосфинголипидов:
 функции «ложная цель» и иммуносупрессия.
 - Адаптация к новому соседству.
 - Новые цепи способствуют метастазированию (лиганды галектинов)
 - ▶ Новые цепи участвуют в ангиогенезе (SiaLe^x).
- Измененное гликозилирование причина или следствие?


Примеры углеводных опухольассоциированных антигенов

Обозначение	Структура		
SiaTn	Neu5Acα2-6GalNAcα-Ser/Thr		
Tn	GalNAcα-Ser/Thr		
TF (T)	Galβ1-3GalNAcα-Ser/Thr		
GD3	Neu5Acα2-8Neu5Acα2-3Gal		
GD2	GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-3)Gal		
GM2	GalNAcβ1-4(Neu5Acα2-3)Gal		
Globo-H	Fucα1-2Galβ1-3GalNAcβ1-3Galα		
FucGM1	Fucα1-2Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Gal		
Le ^y	Fucα1-2Galβ1-4(Fucα1-3)GlcNAc		
Dimeric Le ^x	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc		
	3		
	Fucα1 Fucα1		
Polysialic acid	$(Neu5Aca2-8)_n$		
SiaLea	Neu5Acα2-3Galβ1-4 (Fucα1-3)GlcNAc		

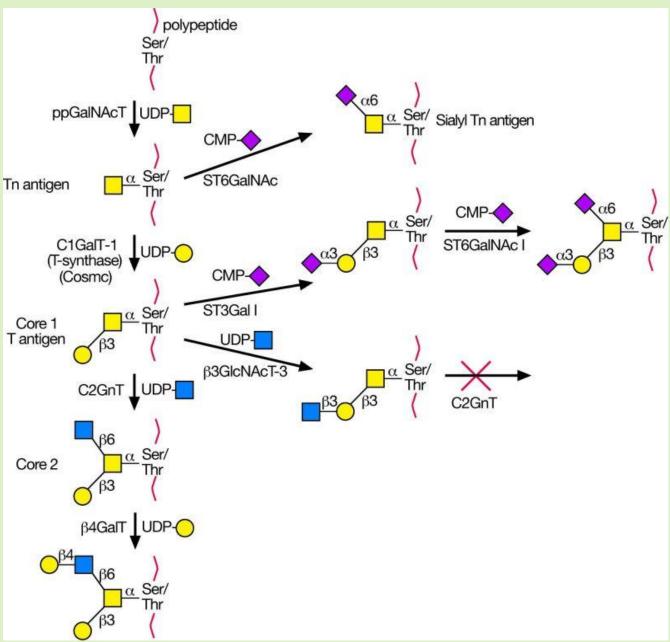
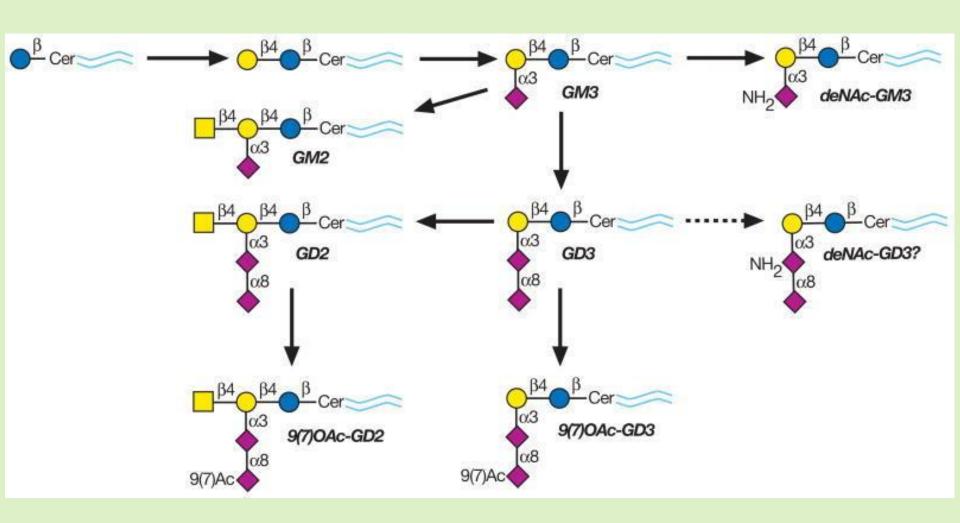
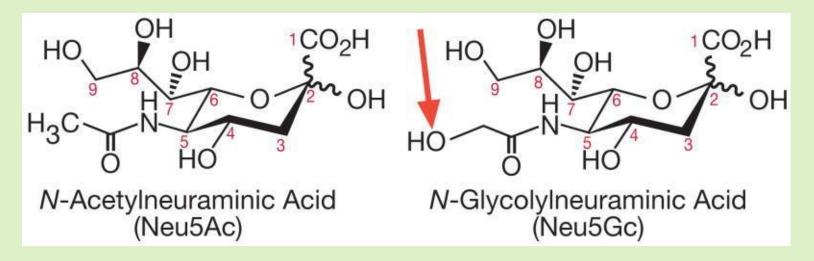
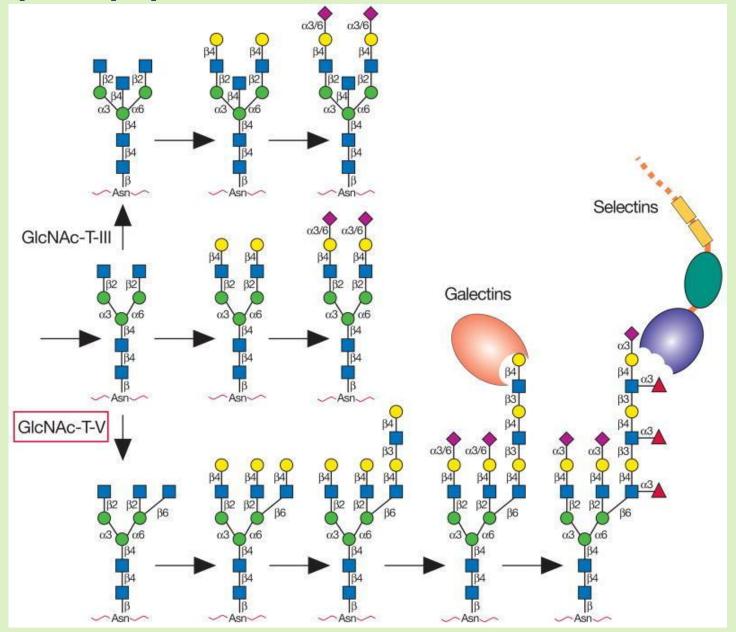

Профили экспрессии углеводных опухольассоциированных антигенов в различных опухолях/тканях/органах

Table 3 Expression profiles of tumour-associated carbohydrate antigens on malignant tissues														
Tumour	Tumo	Tumour-associated carbohydrate antigens*												
	sLe×	Le×	sLeª	Leª	sTn	Tn	TF	Ley	Globo H	PSA	GD2	GD3	Fucosyl GM1	GM2
B-cell lymphoma	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	✓	ND	ND	✓
Breast	ND	ND	✓	ND	✓	✓	✓	✓	✓	ND	ND	ND	ND	✓
Colon	ND	ND	✓	ND	✓	ND	✓	✓	ND	ND	ND	ND	ND	✓
Lung	✓	ND	ND	ND	✓	ND	ND	✓	✓	ND	ND	ND	ND	✓
Melanoma	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	✓	✓	ND	✓
Neuroblastoma	ND	ND	ND	ND	ND	ND	ND	ND	ND	✓	✓	✓	ND	✓
Ovary	ND	ND	ND	ND	✓	ND	✓	✓	✓	ND	ND	ND	ND	✓
Prostate	ND	ND	ND	ND	✓	✓	✓	✓	ND	ND	ND	ND	ND	✓
Sarcoma	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	✓	✓	ND	✓
Small cell lung	ND	ND	✓	ND	ND	ND	ND	ND	✓	✓	ND	ND	✓	✓
Stomach	ND	/	/	✓	/	/	✓	✓	✓	ND	ND	ND	ND	1

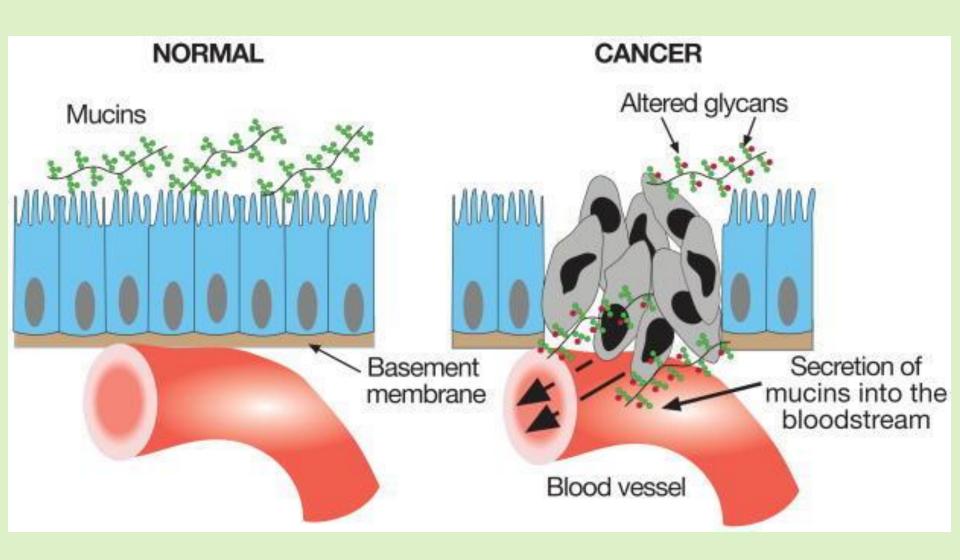

Globo H, globohexaosylceramide; Le, Lewis; ND, not detected at given threshold; PSA, polysialic acid; s, sialyl; TF, Thomsen–Friedenreich; Tn, 2-6- α -N-acetylgalactosaminyl. *Antigens present on at least 50% of cancer cells in at least 60% of biopsy specimens based on REFS 191,192.


Биосинтез некоторых О-гликанов с корами 1 и 2

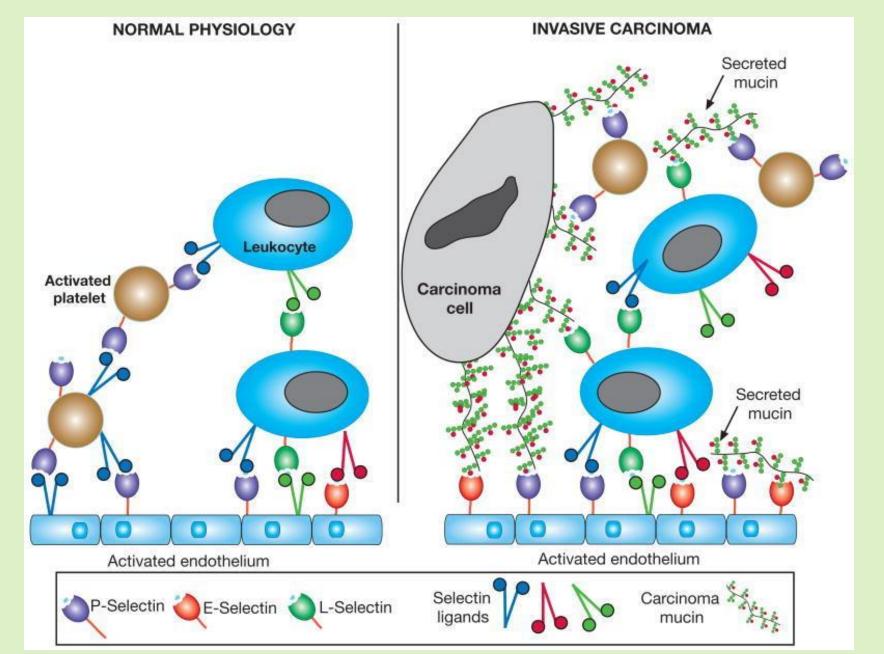
Гиперэкспрессия ганглиозидов



Гиперэкспрессия нетипичной для человека *N*-гликолилнейраминовой кислоты (Neu5Gc)

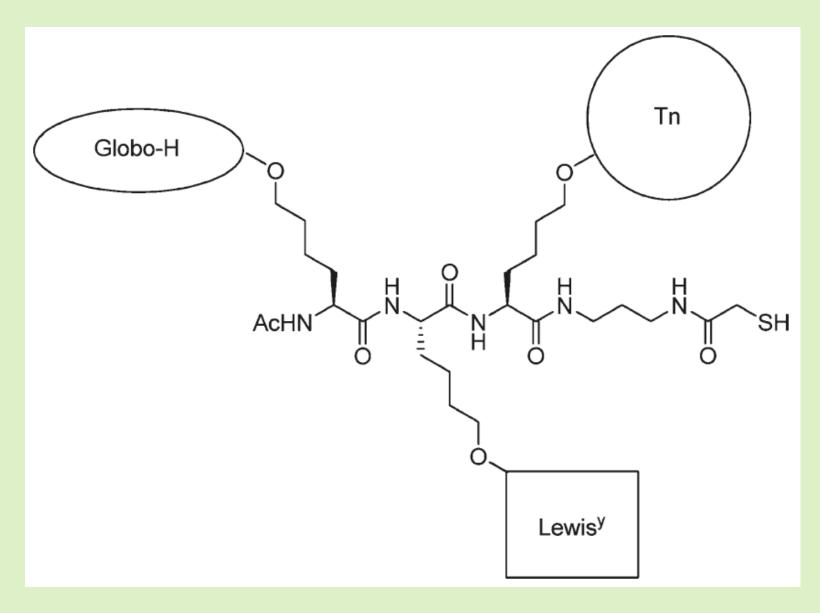


- Путь биосинтеза Neu5Gc у человека не известен: (мутация фермента гидроксилазы при переходе от приматов к человеку)
- ▶ Источник животная пища (→ вегетарианство?)
- ▶ Выработка антител против Neu5Gc
- Слабый иммунный ответ выгоден для опухоли:
 - Усиливает хроническое воспаление
 - Усиливает ангиогенез


Увеличение размеров N-гликанов при онкотрансформации: GNT-III и GNT-V

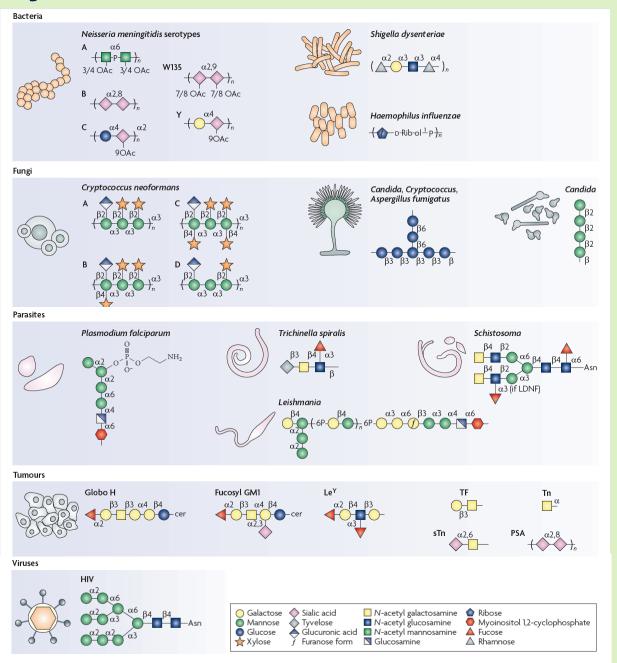
Муцины при онкотрансформации: растворимые и мембранные

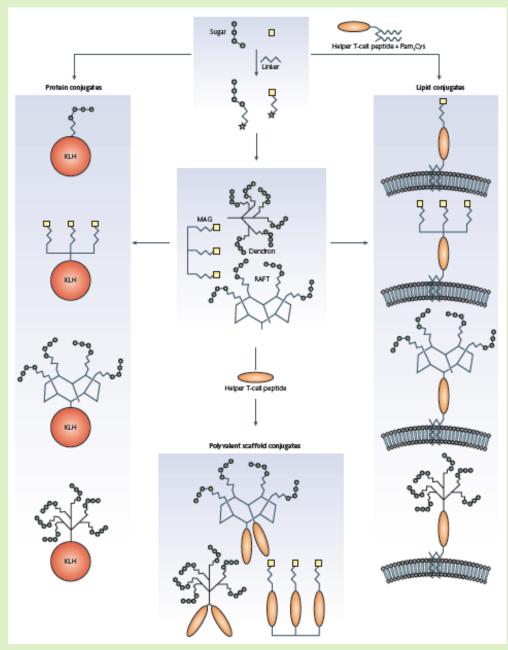
Возможные взаимодействия с селектинами


Возможные пути использования углеводов для лечения рака

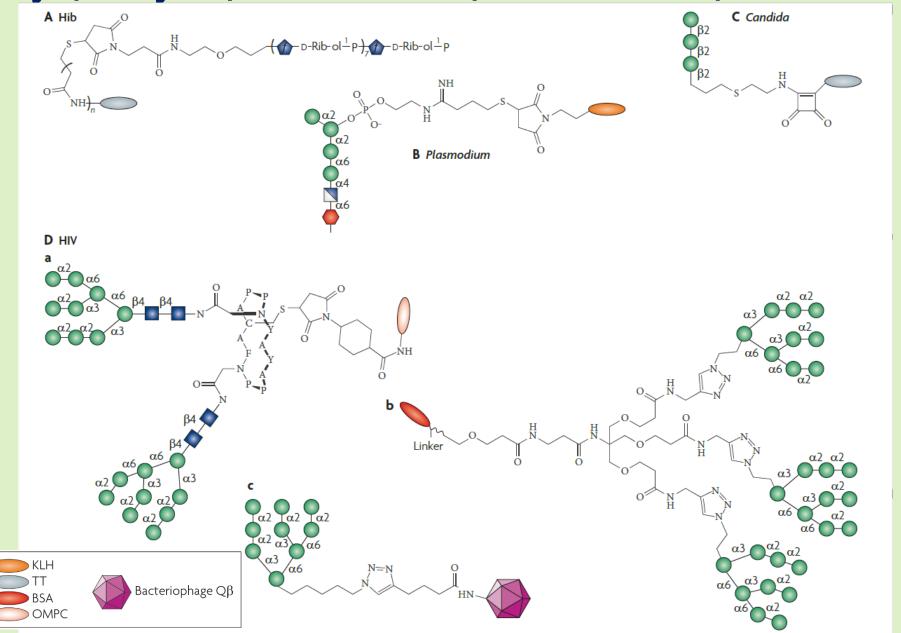
Disease pathway	Therapeutic opportunity	Examples of carbohydrate-based therapies
Biosynthesis of unnatural carbohydrates on the tumor surface	Raise antibodies to the tumor- associated carbohydrate anti- gens to develop a vaccination strategy	Carbohydrate antigens on protein carrier for potential treatment of prostate, colon and breast cancer; theratope (sialyl-Tn antigen conjugate vaccine) for metastatic colorectal and breast cancer
Biosynthesis of unnatural carbohydrates on the tumor surface	Use antibodies generated from the tumor-associated carbo- hydrate antigens to deliver agents to cancer cells	Ligand-targeted liposomal therapeutics
Biosynthesis of unnatu- ral carbohydrates on the tumor surface	Inhibit the carbohydrate processing enzymes	Naturally occurring aza and imino sugars, as well as synthetic derivatives—inhibition of metastatic tumors and tumor growth, as well as pulmonary and colon cancers
Biosynthesis of unnatural carbohydrates on the tumor surface	Inhibit the interactions of the tumor-associated carbohydra- tes with the lectin receptors, to minimize metastasis	Multivalent sialyl-Le ^x derivatives, as potential antimetastatic agents

- Выявление подходящего антигена
- Дизайн иммуногена и синтез вакцины
- Иммунизация: антительный и Т-клеточный ответ


Поливалентный прототип онковакцины

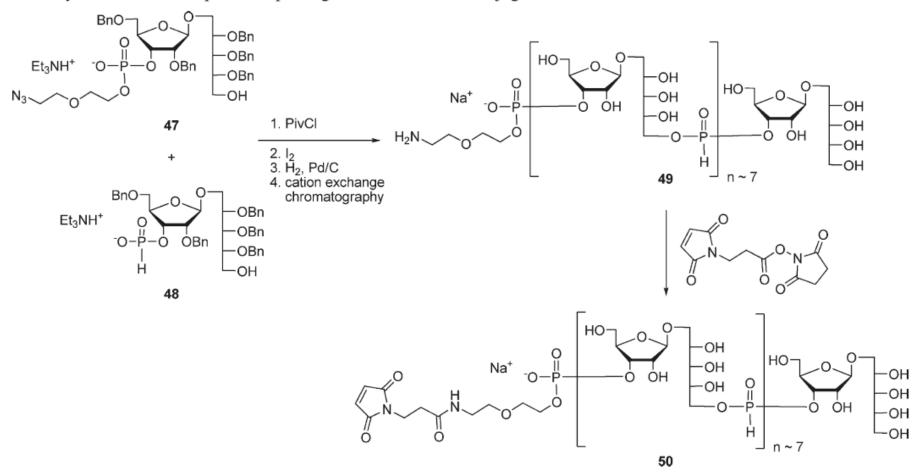

Медицинская гликобиология

Углеводные вакцины


На пути к углеводным вакцинам: антигены

Дизайн гликоконъюгатного иммуногена

Синтетические углеводные иммуногены – существующие или потенциальные вакцины



Синтетические углеводные иммуногены – существующие или потенциальные вакцины

Синтез углеводного гаптена для первой синтетической Hib-вакцины (Куба, 2003)

Scheme 8. Synthesis of Hib Capsular Repeating Unit 50 Used for Conjugation to Human Serum Albumin or Tetanus Toxoid

Лицензиров	анные углеводные	вакцины (США)
Table 1 Licensed carbohy	drate-based vaccines	
Indication	Vaccine	Manufacturer (Trade name)

conjugate)

vaccine

23-valent

Table 1 Licensed carbohydrate-based vaccines					
Indication	Vaccine				
Haemophilus influenzae type b (Hib)	Glycoconjugu tetanus toxoi				

Neisseria meningitidis A, C, Y

and W-135 Streptococcus pneumoniae 4, 6B, 9V,

Salmonella typhi 14, 18C, 19F and 23F Streptococcus pneumoniae 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F and 33F ugate, polysaccharide with id (TT)

Diphtheria toxoid (DT), TT and acellular pertussis adsorbed, inactivated poliovirus

and Hib-TT conjugate vaccine Hib conjugate (meningococcal protein Hib conjugate (meningococcal protein conjugate) and hepatitis B (recombinant)

Glycoconjugate, meningococcal polysaccharide with DT Meningococcal polysaccharide

Vi capsular polysaccharide Pneumococcal polysaccharide 7-valent-CRM197 conjugate

Pneumococcal polysaccharide,

Wyeth Pharmaceuticals (Prevnar) Merck & Co (Pneumovax 23)

Sanofi Pasteur (Pentacel) Merck & Co (PedvaxHIB)

Sanofi Pasteur (ActHIB);

(Hiberix)

GlaxoSmithKline Biologicals

Merck & Co. (Comvax) Sanofi Pasteur (Menactra)

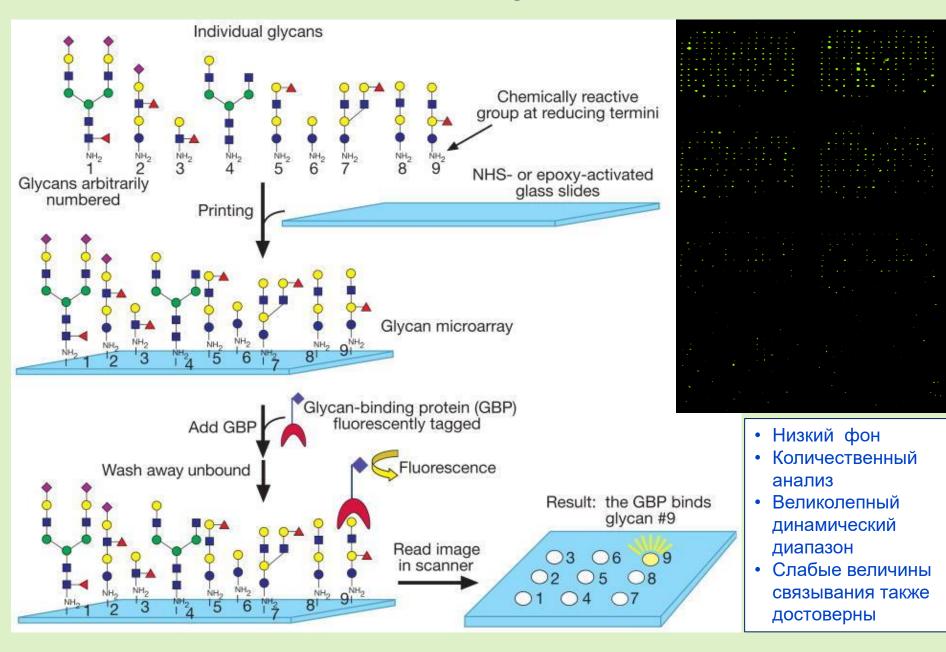
Sanofi Pasteur (Menomune-A/C/Y/W-135) Sanofi Pasteur (TYPHIM Vi)

Углеводные вакцины в разработке

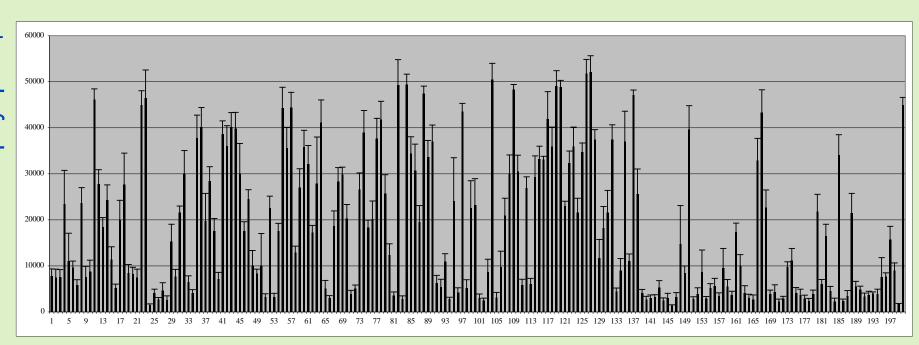
Table 2 Examples of carbohydrate-based vaccines in development				
Indication	Vaccine	Phase of development		
Enterohaemorrhagic Escherichia coli	O-specific polysaccharide–protein conjugate	Phase I ¹⁸²		
Group A Streptococcus spp.	Glycoconjugate of Group A polysaccharide with TT	Preclinical ¹⁸³		
Group B Streptococcus spp.	Glycoconjugates of type Ia, Ib, II, III and V polysaccharides linked to carrier proteins	Phase II ¹⁸⁴		
Haemophilus influenzae (non-typeable)	Subunit-detoxified lipooligosaccharide conjugate	Preclinical ¹⁸⁵		
Pseudomonas aeruginosa	Octavalent glycoconjugate of O-polysaccharide with toxin A	Phase III ¹⁸⁶		
Salmonella typhi	rEPA-Vi conjugate vaccine	Phase III ^{33, 187}		
Shigella dysenteriae	O-specific polysaccharide–protein conjugate	Preclinical ⁴²		
Shigella flexneri	O-specific polysaccharide–protein conjugate	Phase II ¹⁸⁸		
Shigella sonnei	O-specific polysaccharide–protein conjugate	Phase III ¹⁸⁹		
Streptococcus pneumoniae	Glycoconjugates of synthetic 6B polysaccharide motifs	Preclinical ⁴³		
Vibrio cholerae	Lipopolysaccharide-protein conjugate	Phase I ¹⁹⁰		
Aspergillus fumigatus	β-Glucan–CRM197 conjugate	Preclinical 65,66		
Candida albicans	Cell surface oligomannosyl epitope (various conjugates)	Preclinical ^{63,64}		
	β-glucan–CRM197 conjugate	Preclinical ^{65,66}		

Углеводные вакцины в разработке

Cryptococcus neoformans	Glycoconjugate of capsular polysaccharide with TT	Phase I ⁵⁰
	β-glucan–CRM197 conjugate	Preclinical ^{65,66}
Leishmania spp.	Lipophosphoglycan	Preclinical ⁹⁷
	Lipophosphoglycan conjugates	Preclinical ¹⁰³
Plasmodium falciparum	Glycosylphosphotidylinositol–KLH conjugate	Preclinical ⁹³
HIV-1	Man $\alpha(1\rightarrow 2)$ Man oligomannosyl epitope (various conjugates, engineered yeast strains and modified glycoproteins)	Preclinical ^{17,} 113–118,165
Breast cancer	Unimolecular hexavalent conjugates (Globo H–GM2–Lewis ^y –sTn–TF–Tn–R)	Preclinical ¹⁴⁹
	sTn(c)–KLH plus QS-21 as adjuvant	Phase I ¹³⁷
Epithelial cancer	Globo H–GM2–Lewis ^y –MUC1-32(aa)–sTn(c)–TF(c)–Tn(c)–KLH conjugate vaccine plus QS-21 as adjuvant	Phase I ¹⁴⁷
Melanoma	GM3NPhAc-KLH	Preclinical ¹⁵²
Prostate cancer	Unimolecular hexavalent conjugates (Globo H–GM2–Lewis ^y –sTn–TF–Tn–R)	Preclinical ¹⁴⁹
	TF(c)–KLH plus QS-21 as adjuvant	Phase I ¹³⁸
	Tn(c)–KLH and Tn(c)–palmitic acid	Phase I ¹³⁹
	Globo H–GM2–Lewis ^y –MUC1-32(aa)–TF(c)–Tn(c)–KLH conjugate vaccine plus QS-21 as adjuvant	Phase II ¹⁴⁸


Медицинская гликобиология

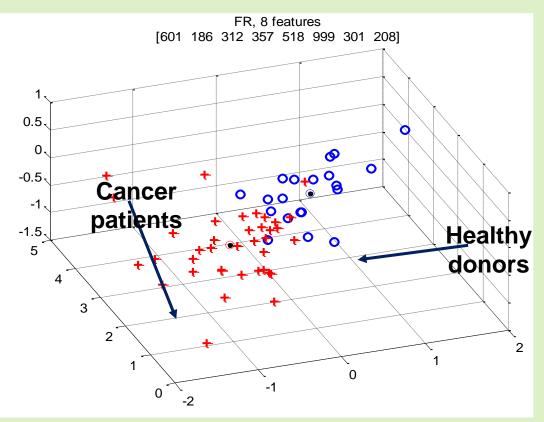
Анти-гликановые «естественные» антитела


Анти-гликановые «естественные» антитела человека

- ▶ Есть всегда, независимо от внешнего иммуногена
- Репертуар в норме у всех людей сходен, стабилен
- ▶ Низкоаффинные, изотип IgM
- Надзорная роль за:
 - чужим
 - аберрантным своим
- Репертуар и уровень меняется при патологиях

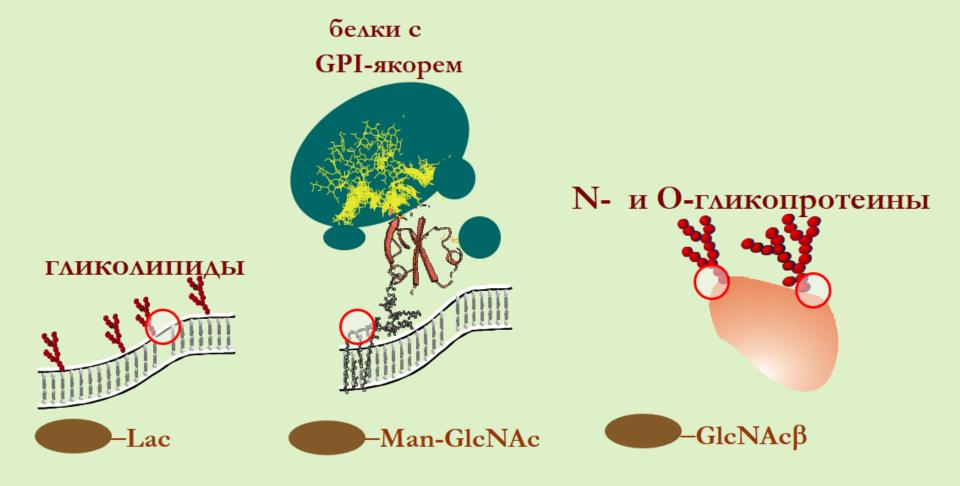
Гликочип – основной инструмент

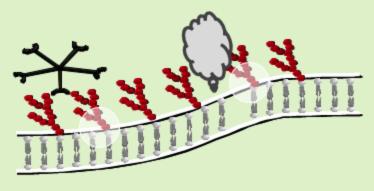
Репертуар анти-гликановых естественных антител человека



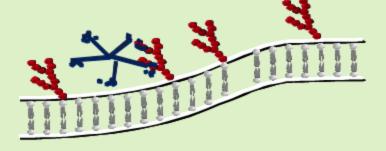
200 гликанов, типичных для млекопитающих

Профили анти-гликановых естественных антител здоровых людей и онкобольных


неидентичны

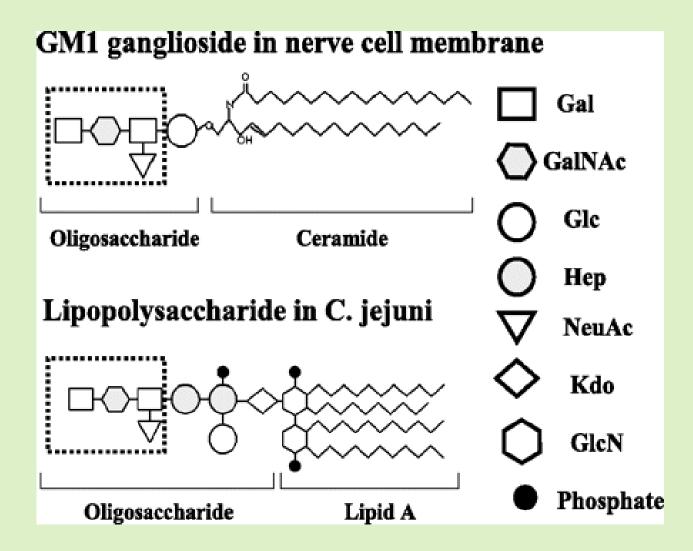

- Диагностический «усилитель»: возможна ранняя диагностика
- Для диагностики значимы совсем НЕ хорошо известные опухольассоциированные антигены

Антитела (IgM) к «коровым» участкам гликанов



Гипотеза об антителах к коровым участкам: это «надзорные» антитела против скрытых в норме эпитопов

нормальная мембрана



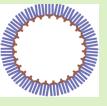
что-то «не так»

Медицинская гликобиология

Аутоиммунные заболевания

Молекулярная мимикрия Campylobacter jejuni

Другой пример – язва желудка (Helicobacter pylori): Le^X, Le^Y

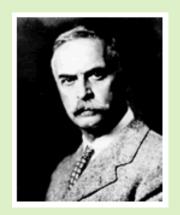

Антитела к гликолипидам

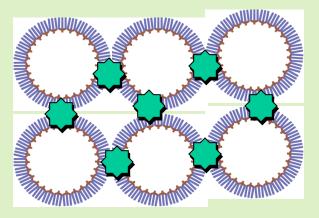
Glycolipid	Pathology
Sulfatide	chagasic cardiomyopathy
	diabetic neuropathy
	leprosy
	neuropsychiatric systemic lupus erythematosus paraproteinemic neuropathy
	sudden deafness
	Guillain-Barré syndrome
	primary biliary cirrhosis + neuropathy
	chronic inflammatory demyelinating polyneuropathy
No ale atatatus e auda augustida	transverse myelitis
Neolactotetraosylceramide	hepatitis leukemia/lymphoma
	idiopathic thrombocytopenic purpura
	mixed connective tissue disease
	systemic lupus erythematosus
Galactosylceramide	neuropsychiatric-systemic lupus erythematosus
	multiple sclerosis
GalNAc-globotetraosylceramide	Guillain-Barré syndrome rheumatoid and osteoarthritis
GainAc-globotetraosylceralilide	leukemia/lymphoma
	mixed connective tissue disease
Sulfoglucuronylparagloboside	
(SGPG)	paraproteinemic neuropathy
	Guillain-Barré syndrome chronic inflammatory demyelinating polyneuropathy
	chiomic imaminatory demyemating polyneuropating
Gangliosides	Guillain-Barré syndrome
_	

Медицинская гликобиология

Трансплантация и переливание крови

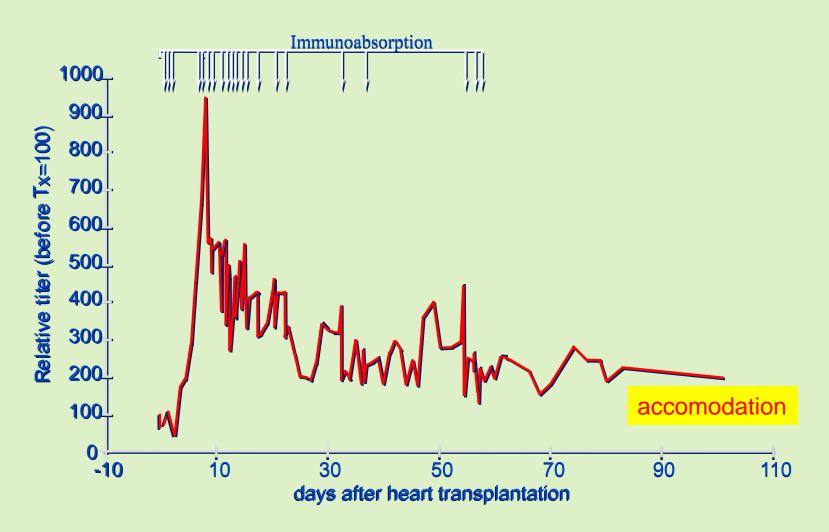
К. Ландштайнер, 1900 г.





гемагглютинация

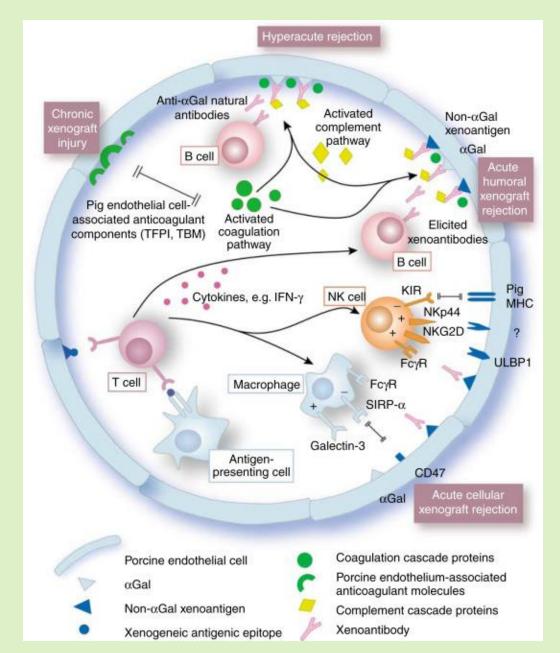
Группа крови	Структура антигена на эритроцитах и <u>тканях</u>	Название антигена	Наличие антител у человека с данной группой крови	Особенности как донора
0 (I)	Fucα1-2Gal	Н	анти-А + анти-В	универсальный донор
A (II)	Fucα1-2 Gal GalNAcα1-3	A	анти-В	только для реципиентов А и АВ
B (III)	Fucα1-2 Gal Galα1-3	В	анти-А	только для реципиентов В и АВ
AB (IV)	оба		ни тех, ни других	совместим только с АВ


33 Системы групп крови

No.	System name	System symbol		Chromosomal location	CD numbers
001	ABO	ABO		9q34.2	
002	MNS	MNS		4q31.21	CD235
003	Р	P1		22q11.2-qter	
004	Rh	RH		1p36.11	CD240
005	Lutheran	LU		19q13.32	CD239
006	Kell	KEL		7q34	CD238
007	Lewis	LE		19p13.3	
800	Duffy	FY		1q23.2	CD234
009	Kidd	JK		18q12.3	
010	Diego	DI		17q21.31	CD233
011	Yt	YT		7q22.1	
012	Xg	XG		Xp22.33	CD99†
013	Scianna	SC		1p34.2	
014	Dombrock	DO		12p12.3	CD297
015	Colton	CO		7p14.3	
016	Landsteiner-Wiener	LW		19p13.2	CD242
017	Chido/Rodgers	CH/RG		6p21.3	
018	н	H		19q13.33	CD173
019	Kx	XK		Xp21.1	
020	Gerbich	GE		2q14.3	CD236
021	Cromer	CROM		1q32.2	CD55
022	Knops	KN		1q32.2	CD35
023	Indian	IN		11p13	CD44
024	Ok	OK		19p13.3	CD147
025	Raph	RAPH		11p15.5	CD151
026	John Milton Hagen	JMH		15q24.1	CD108
027	- I	1		6p24.2	
028	Globoside	GLOB		3q26.1	
029	Gill	GIL		9p13.3	
30	Rh-associated glycoprotein	RHAG		6p21-qter	CD241
31	Forssman	Fs	Fs		

А(В)-несовместимая трансплантация

Уровень анти-В антител в крови пациента с «неправильно» пересаженным сердцем: динамика адсорбции


Ксенотрансплантация (пересадка органов между разными видами)

α-Gal эпитоп (Galα1-3Galβ1-4GlcNAc-R)

	фермент α Gal- трансфераза	антиген Galα1-3Gal	антитела к Gal α1-3 Gal
СВИНЬЯ	есть	есть	Нет
человек	нет	нет	высокий уровень

Трансгенные свиньи

Ксенотрансплантация: не только α-Gal антиген

Медицинская гликобиология

Рекомбинантные гликопротеины

Рекомбинантные гликопротеины

Системы экспрессии:

- E. coli
- дрожжи
- CHO

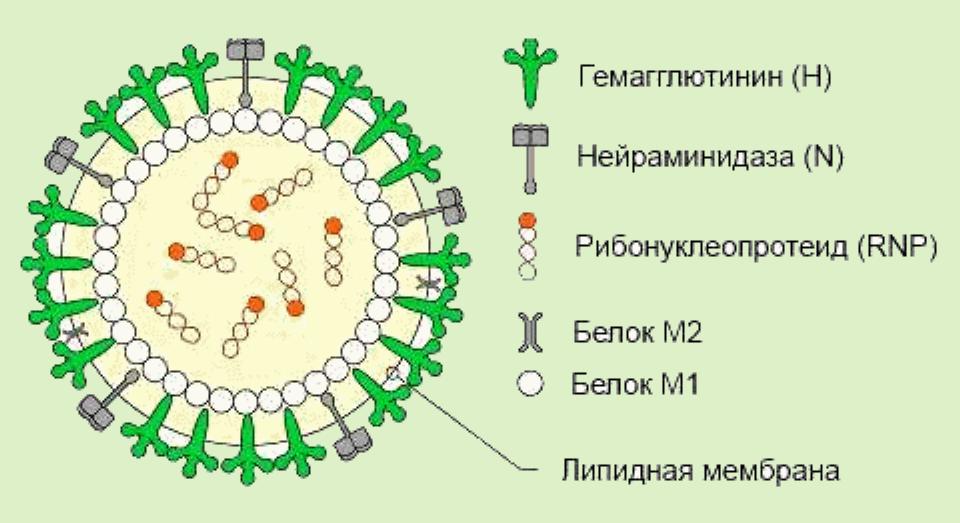
ПРИМЕРЫ:

- · Цередаза (GlcCer-глюкозидаза)
- · GM-CSF (гранулоцит- макрофаг колониестимулирующий фактор)
- · IL (интерлейкины)
- ЕРО (эритропоэтин)

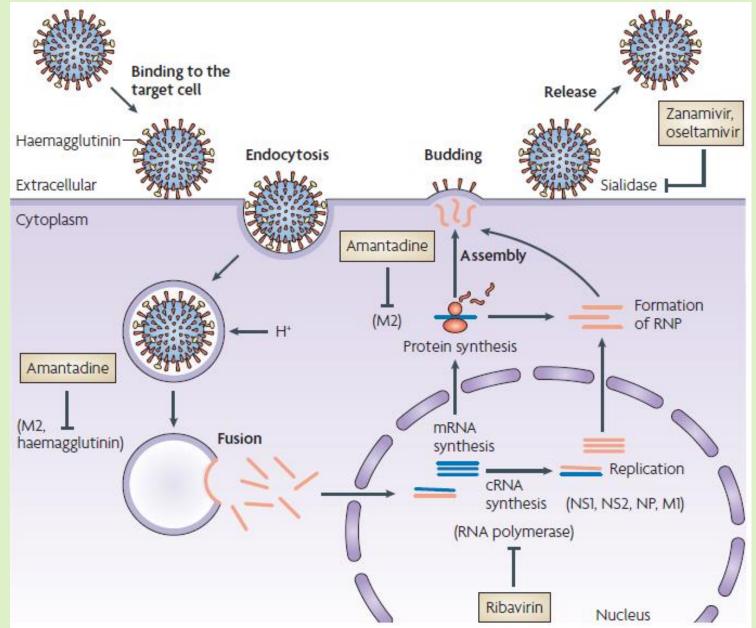
ПРОБЛЕМЫ:

(возникают, если гликозилирование неправильное, или вовсе отсутствует)

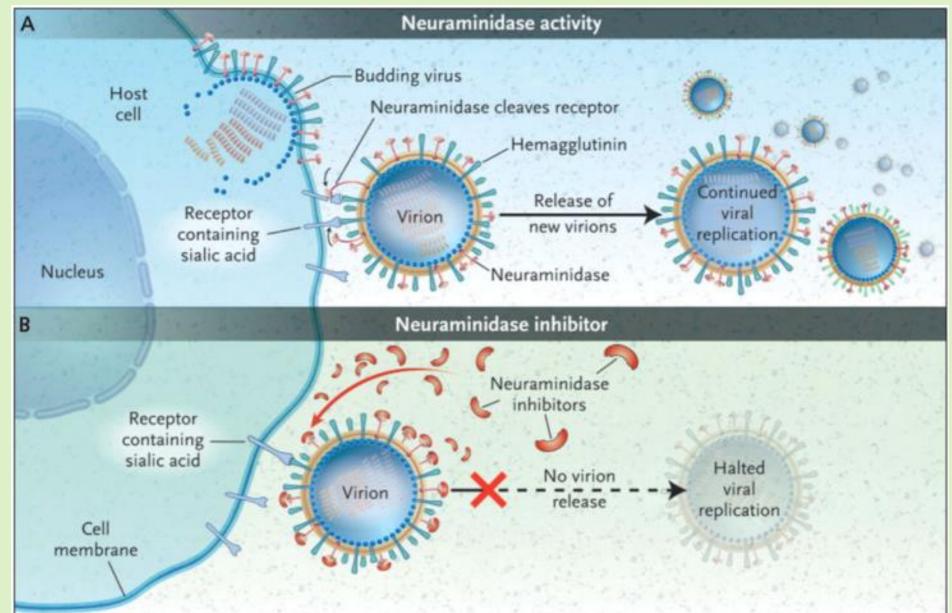
- нет активности
- ·неправильная фармакокинетика
- нестабильность
- ·иммуногенность (αGal)


Системы экспрессии: гликозилирование?

Generic Designation	Therapeutic Protein	Expression System	Glycosylationa
Agalsidase alfa	α-galactosidase A	Human cell line	N-links [<u>5</u> , <u>6</u>]
Agalsidase beta	α-galactosidase A	CHO cells	N-links [<u>5</u> , <u>6</u>]
Aldesleukin	Interleukin 2	E. coli	None
Alefacept	The extracellular CD2-binding portion of the human leukocyte function antigen-3 (LFA-3) linked to the Fc portion of human IgG1	CHO cells	N-links [Z]
Algulcosidase alfa	Acid glucosidase	CHO cells	N-links [<u>8</u> , <u>9</u>]
Alteplase	Tissue plasminogen activator	CHO cells	N-links [<u>10</u> – <u>13</u>]
Anakinra	Interleukin-1 receptor antagonist (IL-1Ra)	E. coli	None
Anti-hemophilic factor	Factor VIII	BHK & CHO cells	N-links & O-links [<u>14</u> , <u>15</u>]
Antithrombin alfa	Antithrombin	Transgenic goat's milk	N-links [<u>16</u> , <u>17</u>]
Becaplermin	Platelet-derived growth factor	S. cerevisiae	None
Calcitonin-salmon	Salmon calcitonin	E.coli	None
Chorionic Gonadotropin alfa	Chorionic Gonadotropin	CHO cells	N-links & O-links [<u>18</u> – <u>20</u>]
Darbepoietin alfa	Engineered erythropoietin with 2 extra N-glycans (longacting)	CHO cells	N-links & O-links [21, 22]
Denileukin diftitox	Diphtheria toxin fragments A and B (Met1-Thr387)-His followed by the sequences for interleukin-2 (IL-2; Ala1-Thr133)	E.coli	None
Dibotermin alfa	Bone morphogenic protein 2 (BMP-2)	CHO cells	N-links
Dornase alfa	Deoxyribonuclease I	CHO cells	N-links [23]
Drotrecognin alfa (activated)	Activated Protein C	Human kidney cell line (293 cells)	N-links [<u>24</u>]

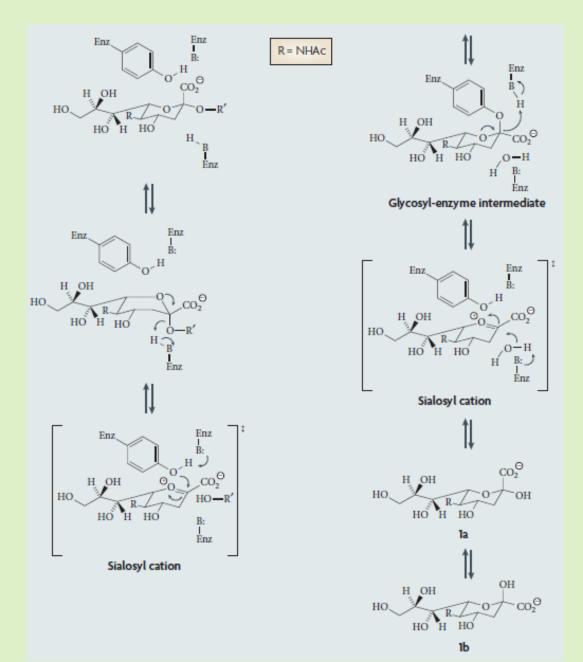

Медицинская гликобиология

Вирус гриппа: ингибиторы нейраминидазы

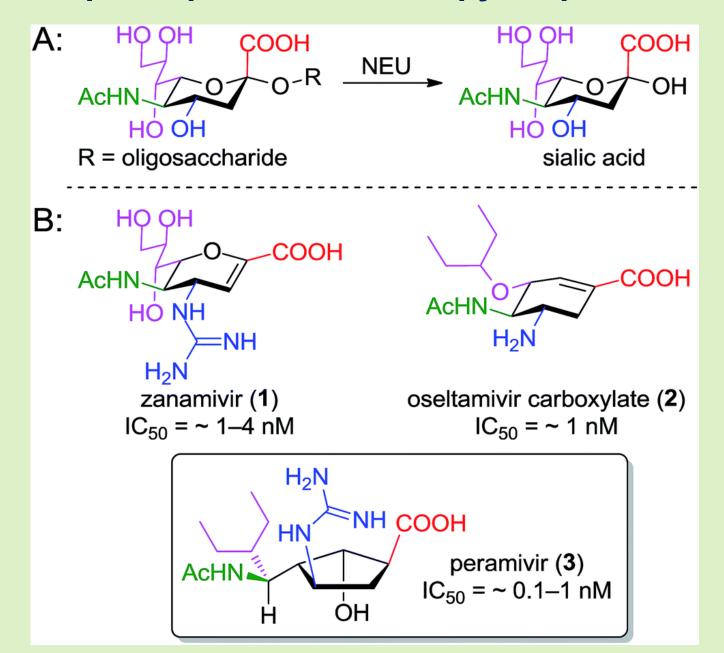

Строение вируса гриппа

Жизненный цикл вируса гриппа: мишени для терапии

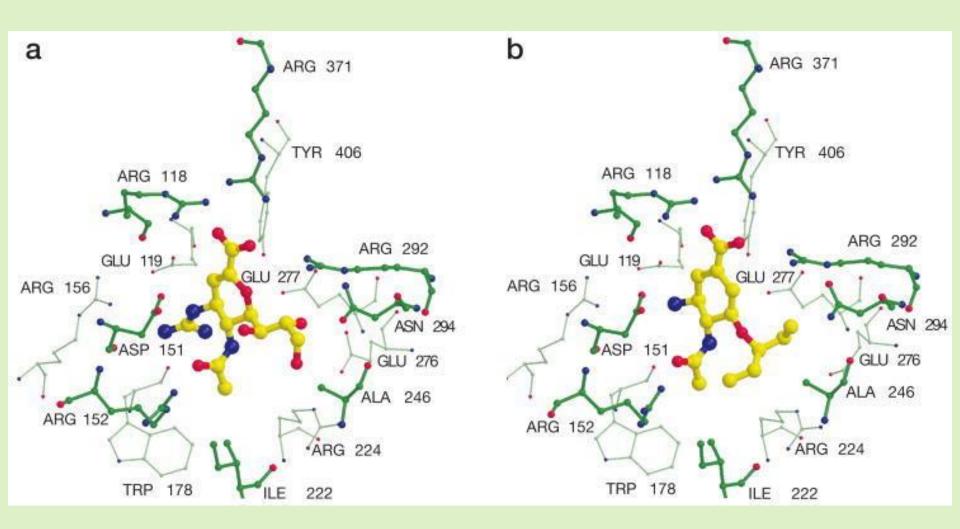
Ингибирование нейраминидазы – остановка жизненного цикла вируса гриппа



Вирус гриппа: жизненный цикл и ингибиторы

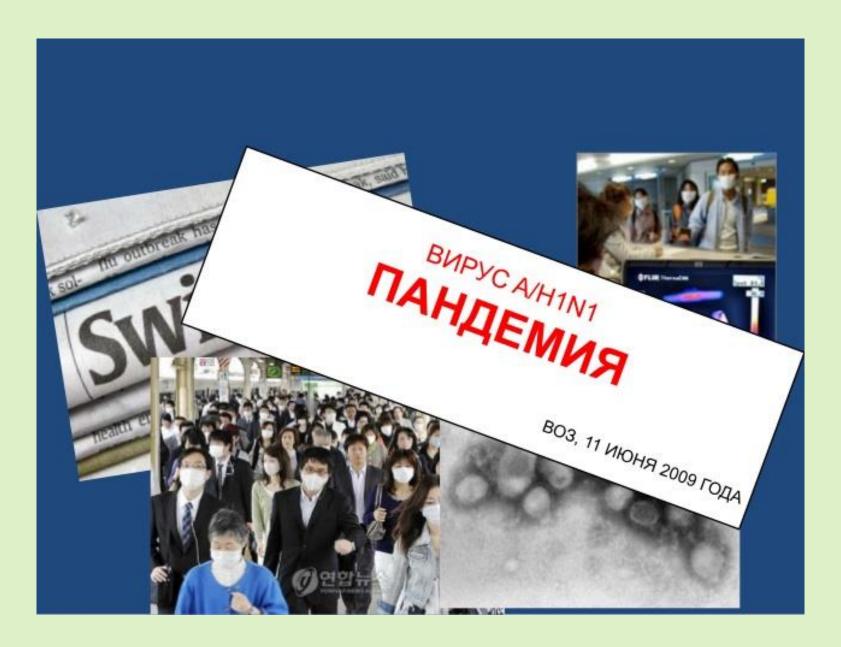

Механизм действия нейраминидазы вируса

гриппа



Relenza™ и Tamiflu™: «родственность» строения

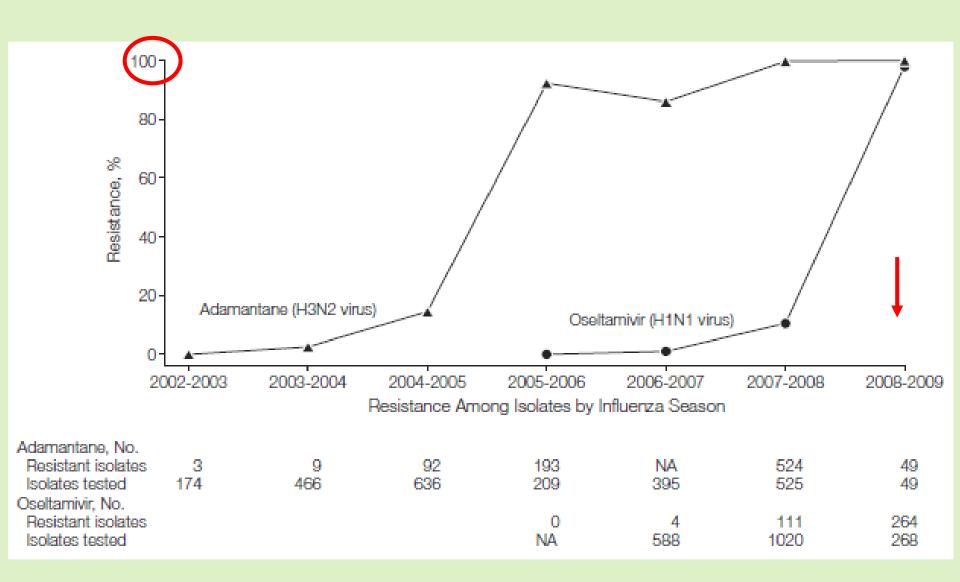
Ингибиторы нераминидазы вируса гриппа



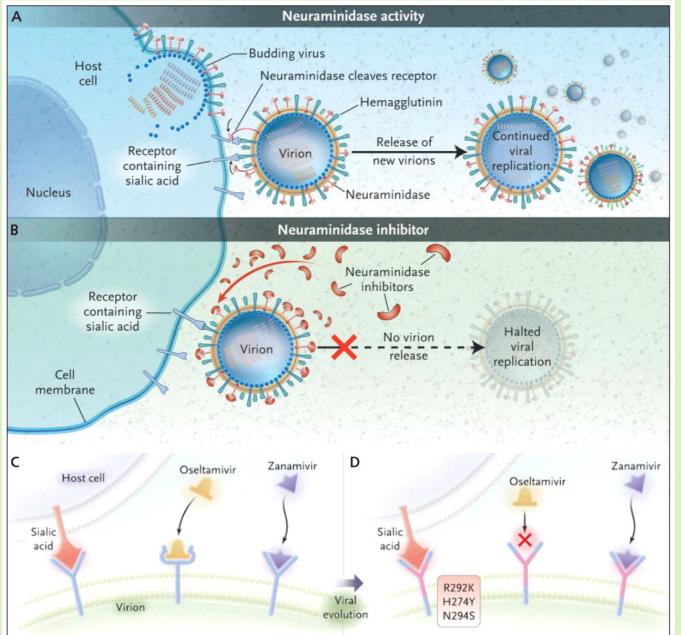
Нейраминидаза + ингибиторы

Relenza™ (zanamivir) (4-guanidino-Neu5Ac2en) De-esterified Tamiflu™ (oseltamivir)

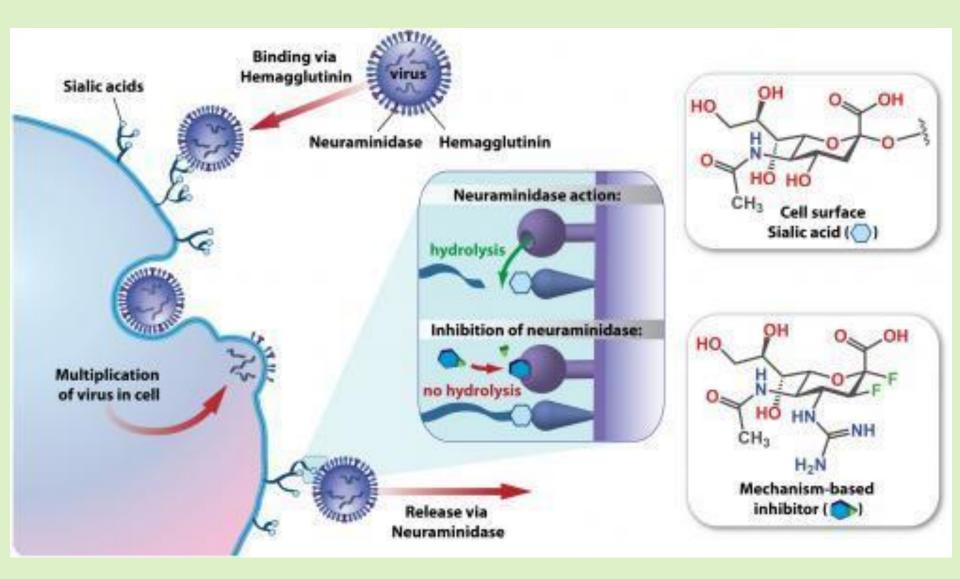
Пандемия гриппа



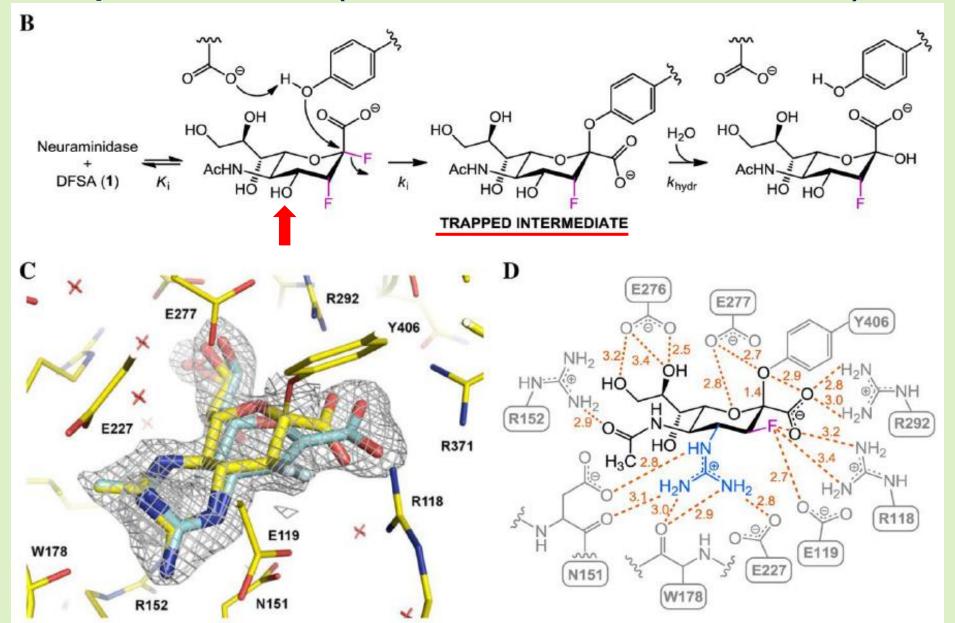
Резистентность вирусов гриппа к препаратам


Таблица 1. Сводные данные о преобладании устойчивости к противовирусным препаратам у циркулирующих в настоящее время вирусах сезонного гриппа в течение сезона 2008-2009 в северном полушарии.

	% устойчивых к противовирусным препаратам изолятов из числа протестированных во всем мире (количество протестированных изолятов)		
	озельтамивир	занамивир	адамантаны
Сезонный грипп типа А (H1N1)	96% (3902)	0% (447)	2% (1821)
Сезонный грипп типа А (H3N2)	0% (1027)	0% (724)	100% (1150)
Вирус гриппа типа В	0% (703)	0% (621)	-


Устойчивость вирусов гриппа H1N1 к озельтамивиру в США

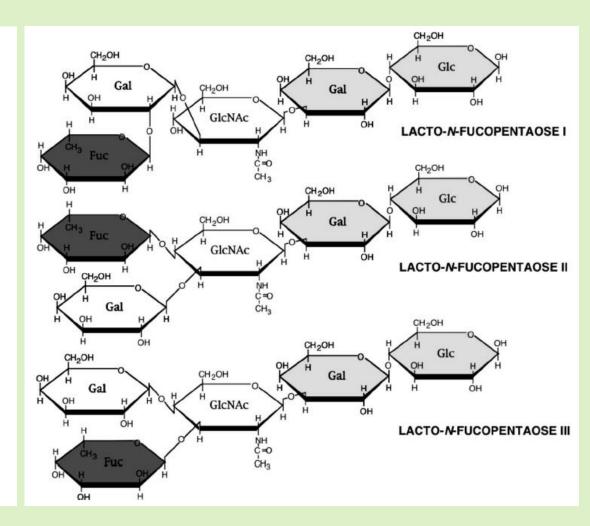
Результат мутации – резистентность: занамивир связывается, а озельтамивир нет



Ингибиторы, ковалентно связывающиеся с нейраминидазой («сломанный ключ в замке»)

Ингибиторы, ковалентно связывающиеся с нейраминидазой ("mechanism-based inhibitors")

Ингибиторы, ковалентно связывающиеся с нейраминидазой ("mechanism-based inhibitors")


Медицинская гликобиология

Общие вопросы

Как борется наш организм с патогенами?

- Муцины, олигосахариды молока, секреторные антитела IgA (slgA) и др.
- «Ловушки»-макрофаги
- Эволюционные изменения углеводных цепей:

в частности, антигенов AB0 и ксено-антигенов; появление соответствующих антител.

Разнообразие как эволюционный путь выживания человека, или зачем нужны группы крови?

Межвидовые различия:

 Антитела к ксено-антигену Galα1-3Gal – это барьер для вирусной инфекции животное → человек (вирус использует гликозилирующий аппарат клеткихозяина)

Внутривидовые различия:

 Антигены групп крови (например, системы АВН) как рецепторы адгезии, являются барьером для внутривидового инфицирования.

Гены, ответственные за группу крови

А-трансфераза: донор - GalNAc-UDP

В-трансфераза: донор - Gal-UDP

Фено-	Агглю- тинация	Аминокислотная замена в ферменте
A ₁	Α	-
A ₂		156(Pro→Leu)
A ₃		291(Asp→Asn)
A _X		216(Phe→IIe)
cis-AB		156(Pro→Leu), 268(Gly→Ala)
B(A)		176(Arg→Gly), 266(Leu→Met), 268(Gly→Ala)
В	В	176(Arg→Gly), 235(Gly→Ser), 266(Leu→Met), 268(Gly→Ala)
0		сдвиг рамки считывания

Конец лекции 7

https://углеводы.su

Список рекомендуемой литературы

все файлы – на сайте углеводы.su Пароль: ****

IN ENGLISH:

- 6. Essentials of glycobiology, A. Varki et al. (Eds.), 3^d edn., 2017.

 Открытый доступ к книге (https://www.ncbi.nlm.nih.gov/books/NBK310274).

 Доступен файл 1-го издания (1999).
- 7. Comprehensive Glycoscience. From Chemistry to System Biology, 2007.
- 9. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance, 2008. Глава 1: Ch1_General Aspects.
- 42. I. Robina, et al. Glycosylation Methods in Oligosaccharide Synthesis. Curr. Org. Synth., 2008. Доступен файл обобщающего обзора (2005; 75 стр.).

ПО-РУССКИ:

- 3. Т. С. Орецкая и др., *Моно- и дисахариды*, 2010, тт. 1 и 2.
- 13. Н. К. Кочетков и др. *Химия углеводов*. 1967.
- 15. А. Ф. Бочков и др., *Углеводы*. 1980.
- 16. P. Хьюз. *Гликопротеины*. 1985.

Примечание: Нумерация литературы соответствует списку на сайте углеводы.su